SANDIA REPORT

SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization & Uncertainty Estimation Department

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2010-2051
Unlimited Release
Printed May 2010

Thyra Coding and
Documentation Guidelines

(TCDG)

Version 1.0

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratori¢g\lbuquerque NM 87185 USA,

Abstract

Coding and documentation guidelines help to improve thédityuaf code and facilitate
collaborative development. This document covers C++ apdinde formatting, and Doxygen
documentation guidelines that have been establisheddoFrilinos package Thyra. Many of these
guidelines are followed in other Trilinos packages as wW&thile some of the guidelines outlined in this
document are more specifically targeted to Thyra, most ofthéelines are more general than Thyra or
even Trilinos.

*Sandia is a multiprogram laboratory operated by Sandia @atjn, a Lockheed-Martin Company, for the United States
Department of Energy under Contract DE-AC04-94AL85000.

Contents

A o o [Tod (oo 1 1
2 Alpha-numeric item deSigNatioNSttt et e e 3
3 __Naming conventions (NC) ... 4
4 Naming and organization of source files (NOSF) coueii i e 8
5 COAING QUITEINESo e e e 9
5.1 General coding guidelines (GdG) ... 9
Error handlingt 9
Memory Management e e 9
ObJeCt CONtIOl . ..o e 12
Object Introspectidn ... 12
Miscellaneous coding guideliﬁes .. 13
5.2 Specification of data members and passing and returibijegts from functions 19
6 Formatting of source COUE ettt 25
6.1 General formatting source code principles (F$CP) 25
6.2 Specific guidelines for formatting source code (#SC) 26
7 Doxygen docUMEeNntation QUIAENINES e 35
7.1 General principles for function and class level docutai@m (DOXP) 35
7.2 Specific Doxygen documentation principles (1@) 36
RETEIENCES . . vttt et e e e 40
Appendix
A Summary Of QUIAEIINESttt e i e e 41
B Summary of Teuchos memory management classesandidioms.......................... 46
C__Summary of “C++ Coding Standards” (CPPCS) with amendments 54
D Miscellaneous amendments to “C++ Coding SEANAAITS” woeae e e e oo 58
D.1 Amendments to items related to compiler/linker incotigties 58
D.2 Amendments for 'using’ declarations and directiveS.......o i 59
[E__Arguments for adopting a consistent code formatting Style. 64
\E.l Statements on coding style from varied persons andgamaations 64
E.1.1 Open source software (the GNU project) cvmu i 64
E.1.2 Agile Methods (Extreme Programming)o eienn .. 65
E.1.3 Code Complete e e 66
E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding St@ad. 67
E.2 The keyboard analogy for coding styles i 68
.3 CONCIUSIONS . . .ottt ettt e e e e e e e e 68
F Guidelines for reformatting of SOUrCe Code cuue i 70

1 Introduction

This document deals with C++ coding guidelines startingnftbe foundation of the guidelines in the book
“C++ Coding Standards” by Sutter and Alexandrescu [10] @& items are outlined in Appendix C) and
the Teuchos-based memory management approach descridgddThe guidelines in this document are
specifically designed to address the development of objéetted numerical C++ libraries and to utilize
the tools in the Trilinos package Teuchos. While the maippse of this document is to define guidelines
for Thyra software (for both interfaces and support softyait is also general enough to be applied to
many other projects that, for instance, might interact Witlyra.

The book “C++ Coding Standards” [10] covers many topics #matmore general than C++ and can be
considered to be general design topics. As a result, the didjkrovides a fairly comprehensive
foundation for creating well designed, high-quality C+fta@re. The goal of this document is not to
restate what is in [10] but instead to fill in some gaps intamdily left by the authors and to provide
amendments to specific items in [10] and tailor them for nucaétibraries. The zeroth item (first item,
zero based) “Don’'t sweat the small stuff” intentionally algspecific recommendations on issues such as
the conventions for naming identifiers and the formattingarde since these are arbitrary. While issues
related to coding style are less important than other isshese are arguments for adopting a more
consistent code formatting style and some of these argunaeatoutlined in Appendix E. Therefore, one
of the purposes of this document is to suggest reasonableenchal guidelines for naming conventions
and code formatting that provide for enough code uniforrtotfacilitate collaborative code development,
code reviews, and maintenance in Agile software developm@tesses [3].

More important than code formatting, a consistent set ofingroonventions for C++ classes, functions,
variables, and other entities also helps to improve coliaie software development and quality. Also,
since clients of the software must interact with these narme&seven more important that a set of naming
conventions be used as consistently as possible in the oltenfaces.

Finally, more important general C++ coding guidelines areeted that append and amend those described
in [10]. While formatting and naming recommendations doaftect the meaning of C++ code, other
coding guidelines do and therefore they will receive moterdgion and should be considered more
seriously. Unlike naming conventions and code formattthgse guidelines are difficult to change after a
significant amount of code has been written.

The rest of the main document is organized as follows. Analpiimeric convention for naming the
various guidelines described in this document is given ictiSe(2. Then, general naming conventions are
presented in Section 3 and they help provide a context fer taide examples. This is followed in
Section 4 with guidelines for naming and organizing soures fiNext, important general C++ coding
guidelines are described in Sectidn 5 that affect softwasdity in critical ways. Following this,
reasonable and minimal formatting guidelines are covanegkeiction 6. Finally, guidelines for Doxygen
documentation are provided in Section 7.

Several appendices are included that deal with a numbepafsoThe guidelines presented in this
document are summarized in Appendix A. The 101 guideline® f10] are listed in Appendix C along
with specifying which items are amended or invalidated leydhidelines in the current document. A
summary of the idioms and conventions surrounding the usigeofeuchos memory management classes
are presented in Appendix B. Appendix D contains discussadritems from [10] that are amended or
invalidated in the Thyra coding guidelines. Most importgrd clarification ofusing declarations is given

that is both more rigid in some ways and less rigid in othersstinan what is described in [10, Item 59].
AppendixX E gives arguments for adopting a consistent codrdtiing style in a single development team
or single project (which is required with current Agile deygment methods). Lastly, Appendix F gives
guidelines for when one developer can legitimately refdransource file written by another developer
when a more consistent code formatting style is not agreed.up

2 Alpha-numeric item designations

Specific items in this document are to be refereed to usingenat®d acronyms starting with and the
version number (e.g. 1.0). For example, the first naming eotiwn guideline can be refereed toSDG

1.0 NC 1 In this way, these short precise alpha-numeric designatich ad CDG 1.0 NC 3can be used

in code reviews as short-hand references to specific gneeliThe version number of the coding standard
is important in order to allow changes in future coding giiiges and allow the numbers to change from
version to version (e.dNC 1in TCDG 1.0 might becomeNC 3in TCDG X.Y).

In addition, this document is based on [10] and those guidslvill be refereed to using an enumerated
acronym such a€PPCS Item 15(i.e. “Use const proactively”).

3 Naming conventions (NC)

C++ classes, functions, variables, data members etc. dheuhamed and used in a fairly consistent
manner. The following guidelines are consistent with commactice as exemplified in|[8] for example
and are also largely consistent with the Java nhaming stehdar

e NC 1. Capitalize C++ class and struct names 8eneCl ass: Names for C++ classes and structs
should generally be capitalized and separate words sheubtdicatenated and capitalized (i.e.
“Camel Case”). For example:

class SomeClass {...};

e NC 2: Capitalize C++ namespace names@snmeNaneSpace: C++ namespaces should follow the
same naming convention as C++ classes and namespace namlelsrsit contain too many
acronyms and should not be too short or too common. For exampl

namespace MyNameSpace {

} /I namespace MyNameSpace

e NC 3: C++ enum type names should begin wittas ESome Enumand enum values should use all
caps and scope context 8OVE_ENUM. VAL UE: Enumeration type names should follow the same
convention as for class and struct names but they shouldalgio with the capital letter 'E’ to
signify that this type is an enum. Enumeration values shbaldll upper-case with underscores
between words and should use a common prefix for scopingmiitie enum type. Also, enum
values should use the default value assignment defined tmpthpiler in general as this aids their
use as indexes into zero-based arrays. For example:

enum ESolveStatus {
SOLVE_STATUS_CONVERGED,
SOLVE_STATUS_UNCONVERGED,
SOLVE_STATUS_UNKNOWN

b

Justification Using a capital 'E’ forenums allows the definition of other types with the same basic
name that contain other data. For exampleglveStatus in anenum enumerating the different
types of solve status ar8blveStatus is a C++ struct that contains &%olveStatus member
along with some other data. The use of the scoping prefixYDEVESTATUS above) is also
recommended in [7, Section 11.4].

e NC 4: C++ object instance identifier names should begin with a loease letter asoneObj ect :
Formal function arguments and other object identifiers khan general, start with a lower-case
letter and then use capitalization for following words with underscores between words in general.
For example:

Lhttp://java.sun.com/docs/codeconv/html/CodeConvTOC. doc.html

ClassTypel obj;
ClassType2 objectForMyThing;
ClassType3 objectForYourThing;

Exception:ldentifiers that have mathematical symbols in them such &sandalpha should use
lower case names separated by underscoresr example:

Vector curr_x;
Matrix curr_J;
Scalar curr_alpha;

Justification: The Java conventioobjectldentifierName using capitalization with no underscores
produces shorter readable identifiers for English namesdes not work well for identifiers with
math symbols. With math symbols, it is important to maintaie case of the symbol asandX may
mean something totally different mathematically and itdafusing and/or ambiguous to write either
currx orcurrX . Inthese cases, it is far better to use underscores andanmitex as shown above.
While in it is considered bad practice to differentiate shie names by case alone (see “Don't
differentiate variable names solely by capitalization[fh Section 11.7]), this is very common in
math and mathematical software should support this.

e NC 5. C++ class data member names should begin with a lower-caser land end with an
underscore asoneDat aMenber = Names for data members within a class should use the same
naming convention as for other object identifier names batishend with an underscore. For
example:

class SomeClass {
public:

private:
int someDataMember_;

3

Justification: Using an underscore after a data variable name helps to dbérszope of the variable
and differentiate that name from a local variable or a menilneestion that may otherwise result in
“shadowing” which causes portability problems on some cterpespecially when warnings are
elevated to errors.

Exception Public data members in simple C++ structs (i.e. where nariamnts need to be
maintained) should not contain underscores. For example:

struct SolveStatus {
ESolveStatus solveStatus;
double achievedTol
std::string message;

Exception:ldentifiers that have mathematical symbols in them such dsandalpha should use
lower case names separated by underscoréer example:

5

Vector curr_x_;
Matrix curr_J_;
Scalar curr_alpha_;

Justification: SeeNC 4 above.

e NC 6: C++ function names should begin with a lower-case lettesasreFunction(...):
Names for functions should use the same naming conventitor abject identifier. For example:

class SomeClass {
public:
void someMemberFunction(...);

3

void someOtherFunction(...);

Exception:ldentifiers that have mathematical symbols in them such &sandalpha should use
lower case names separated by underscoresr example:

class SomeClass {

public:
const Vector& get x() const;
const Matrix& get J() const;
Scalar get alpha() const;

b

Justification: SeeNC 4 above.

e NC 7: Name C++ pure abstract base clas€isobBas e, default implementation base classes
Bl obDef aul t Base, and default concrete implementation clasBe$ aul t TypeABI ob: In
general, the top-level C++ base class for some abstradtionld use the post-fiRase prepended to
the class name (e.gectorBase) and the base class should contain (almost) no implemengaénd
certainly no object data (see Item 36/in [10]). If a defaulpiementation of some of the aspects of
the base class are desired (to make it easier to define cerstrietlasses), then they should be put in
a derived node subclass with the postBefaultBase (e.g.VectorDefaultBase). Any default
concrete implementation of an abstraction should geryeusk the prefiDefault prepended to the
beginning of the name along with any other important pref{eeg.DefaultSpmdVector). For
example:

/I Pure virtual base class
class VectorBase
. ... Il Other base classes
{
public:
virtual void applyOp(...) const = 0;

b

/I Node base class with some default implementations
class VectorDefaultBase
. virtual public VectorBase

{
public:
void applyOp(...) const; // default implementation

3

/I A general default implementation for SPMD vectors
class DefaultSpmdVector
. virtual public VectorDefaultBase // use some default impl ementations

{
public:
void applyOp(...) const; // Specialized overrides

private:
b

e NC 8: Prefer to name const and non-const access functioggea#art () and
get Nonconst Part (), respectivelyIn general, functions that return objects that are coetiin
within a wrapper object should have the prefionconst added to the function that returns the
non-const reference (or pointer) to the contained objemt.ekample,

class SomeClass {

public:
RCP<Part> getNonconstPart();
RCP<const Part> getPart() const;

Justification The choice to name the access functigetdlonconstPart() andgetPart) as
opposed tagetPart() andgetConstPart() is somewhat arbitrary. However, usingnconst

should be preferred in order to make it more explicit that a-nonst object reference is being
requested. Also, a constant view of a part of an object isydweheaper that returning a
non-constant view of the part (see the discussion of theeiggized view” design pattern in [1]) and
therefore to be safe and error on the side of efficiency, tleaomstant access function should be
harder to call than the constant access function.

4 Naming and organization of source files (NOSF)

Since most C++ code is organized around classes, the filgsteushould also primarily be organized
around classes and the nonmember functions that intertitthvdse classes. The primary goal of these file
naming guidelines is to create file names that are globaligusand will therefore facilitatéinclude s
without need for directory paths in thnclude statement. The basic idea is that a source file should be
named based on what it has, not where it is. The following@inds help to define how to organize code
into source files and how to name those source files. The disestructure of source files is beyond the
scope of this document.

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),*. h (C header),
and=* . ¢ (C source) These file names avoid common problems with portabilityanous Unix and
Windows platforms and enable better tools support (likglege-specific formatting in Emacs).

e NOSF 2 Include only one major C++ class with supporting code per dieraand source file with
name(sNanmeSpaceA.l nner Nanespace_SoneCl ass. [hpp, cpp] : As a general rule of
thumb, assign the source code for any major C++ class andsdirmgpcode to a single set of header
and source files. The file name should be composed out of thegmame names enclosing the
classes and other code along with the class name itselfnBtarice, for the class
NameSpaceA::InnerNamespace::SomeClass , the header and source files would be named
NameSpaceA_InnerNamespace _SomeClass.[hpp,cpp] . This convention assures that the file names
will be globally unique. In addition, having a single set dégifor each class helps to keep a single
encapsulation unit of code together which makes searchmgricapsulation unit easier.

e NOSF 3 Use internal include guards in all header filesll header files, without exception, should
use include guards [10, Item 24]. For example, the file
NameSpaceA_InnerNamespace _SomeClass.hpp would have the basic structure:

II' @HEADER
..
/I @HEADER

#ifndef NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP
#define NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

#include "SomeFile.hpp"

#endif // NAMESPACEA_INNERNAMESPACE_SOMECLASS_HPP

Above, the comment NAMESPACEA INNERNAMESPACISOMECLASSIPPafter the finaktendif
helps to show the preprocessor structure in the file and ideh cases where otheifdef — or #if
structures are used.

This is a very minor amendment to Item 24/in [10].

5 Coding guidelines

Coding guidelines, unlike formatting guidelines, greatiffuence the meaning of C++ programs and
therefore require a high priority level. The book “C++ Coglitandards” [10] that this document is
primarily based on provides many good and important codindedines that should be followed and by
default all of the items in [10] are assumed in this documkletre, we provide additional coding guidelines
and, in some cases, amend items in [10]. Where this documseiiént, [10] is to be considered the
authoritative source for guidance. Some miscellaneousidments to the items in [10] are given in
Appendix C and D.

5.1 General coding guidelines (GCG)

Below several different general coding guidelines arewdised. These guidelines affect software quality in
a major way and are not just a matter of personal preferenstyler.

Error handling

e GCG 1. UseTEST_FOREXCEPTI ON(. . .), TEUCHOSASSERT(. . .) and related macros for
reporting all errors, even developer programming errof®r developer errors, prefer to throw
exceptions derived frorstd::logic ~ _error instead of using thessert(...) macro as
recommended in [10, Item 68]. A “logic error” would be treddifferently from a real run-time
error and would therefore come with different assumptidosud the state of the object after the
exception was thrown. In particular, a “real error” (i.e.tjust an internal developer error) should
always provide the basic guarantee to leave the object ifichstate [10, Item 71], while code that
throws a “logic error” cannot make any such guarantees iriggnTherefore, objects that throw
exceptions derived frorstd::logic ~ _error should generally be viewed as unusable and should be
deleted immediately. To debug exceptions, a break-poimbegplaced on function
TestForException _break() 2 which will be called just before an exception is thrown thghuhese
macros. In the future, more sophisticated features likeraatically attaching a debugger or printing
the call stack may be added for some systems. Therefore itigam exception derived from
std:logic ~ _error using these macros should be preferred to usingdbert(...) macro as it
gives us more control over what happens when one of theses tfgrogramming errors occurs.
Also, these exception macros make it much easier to genee#iter error messages than what you
would get from a simple use of thassert(...) macro.

Memory management

e GCG 2: Avoid the use of raw C++ pointers in all but the very speciadiziturations The Teuchos
memory management approach described in [1] mentioneavbhehach include all of the standard
C++ container classes (when using a checked STL implemem}afeuchos::Ptr
Teuchos::RCP , Teuchos::Array , Teuchos::ArrayRCP , andTeuchos::ArrayView allow all code
to be written without any explicit raw C++ pointers. In debmgde, these classes provide full
run-time checking that result in exceptions being throwd excellent error messages (i.e. instead of

2In gdb, a break-point would be set AsTestForException ~ _break() .

segfaults). When a check C++ standard library is used (ehgnwGXXLIB_DEBUGSs defined with
g++), then all of the standard C++ library classes are clobekawell.

GCG 3: Usest d: : st ri nginstead ofchar * or const char *: While std::string is not
debug checked in a typical implementation, indexing anérotimchecked operations with
std::string objects is much less common in numerical code and theresdess likely to result in
memory-usage errors inside of numerical code. Howeverjvehehecked C++ library
implementation is used (e.g. whe®XXLIB_DEBUGSs defined with g++), thentd::string is very
safe.

GCG 4. UseTeuchos: : Pt r as function arguments and return types in the place of raw C++
pointers to single objects for non-persisting and semsisting associationg(see Tables|3 and 4):
The classTeuchos::Ptr simply takes the place of a raw pointer to a single object $atways
default initialized to NULL. In debug mode, it throws exciepts when trying to dereference a null
pointer. Using this class helps to eliminate the need focking for NULL to avoid undefined
behavior when one dereferences a NULL pointer.

GCG 5: UseTeuchos: : RCPfor memory management of single dynamically allocatedatbjend
for handling persisting associationgsee Tables|3 and 4): Replace all references to the class
boost::shared _ptr in all items in [10] withTeuchos::RCP .

GCG 6: Use non-member constructors for all reference-type clsséorce dynamic allocation
returning strong owningeuchos: : RCPobjects Using non-member constructors gives greater
flexibility in how a class object is initialized, simplifiekeé maintenance of the class, and makes the
debug-mode node tracing checking bullet-proof [1].

Non-member constructors take the form:

class SomeClass {
public:
Il No public constructors!

3 “

/I Non-member constructor
RCP<SomeClass> someClass(...);

GCG 7: Specify “generalized view” semantics for all views of abstrobjects Using “generalized
view” semantics leads to the greatest implementation freednd the best performance in all cases;
abet with more strict usage patterns (see the “generalieyd’ design pattern in [1]).

If SomeBaseClass provides a view if itself a®art objects, then applying the generalized view
design pattern results in the interface functions:

class SomeBaseClass {

public:
virtual RCP<Part> getNonconstPart() = 0;
virtual RCP<const Part> getPart() const = 0;

10

The “generalized view” design pattern along with a concest@mple from Thyra is described in
great detail in[1].

Note that views of concrete classes do not have to use “dastariew” semantics and can instead
use “direct view” semantics where appropriate. See all gtait$ about the “non-member
constructor” idiom in/[1].

GCG 8: UseTeuchos: : ArrayVi ewas function arguments and return types in the place of
pointers into raw arrays or other container classes for mmrsisting and semi-persisting
associations and where the array does not need to be resjged Tabless|3 and 4): This class allows
all of the useful capabilities of std::vector which do not include adding or removing entries. In
debug mode, all of the access functions (including itestare fully checked. In optimized mode,
unchecked raw pointers are used and the only overhead is argjgment (which is usually passed
with raw pointers anyway).

GCG 9: UseTeuchos: : Array in place ofst d: : vect or as a contiguous general purpose data
container (see Tables|3 and 4): The primary reason toteghos::Array instead of

std::vector is thatTeuchos::Array is part of the Teuchos system of memory management types
and results in stronger run-time checking. WHikeichos::Array ~ gets all of its real functionality

from std::vector , prefer to usdeuchos::Array as it provides more capabilities and portable
debug checking. For instandeuchos::Array::operator(] is range checked in debug mode
regardless whether there is an underling checked STL imgaiéation or not (see [10, Item 83]). In
debug mode, the iterator is also run-time checked. In amdifieuchos::Array will automatically
convert into arTeuchos::ArrayView object safely when used in function calls and in debug mode,
will catch dangling references [1].

GCG 10: UseTeuchos: : Ar r ayRCPfor memory management of dynamically allocated objects
stored in contiguous arrays of data and for persisting agggans involving contiguous arraygsee
Tables 3 and 4): Note thatuchos::ArrayRCP does notake the place of a contiguous container
class such aSeuchos::Array . A Teuchos::ArrayRCP object cannot change the size of the array, it
can only provide for reference-counted sharing of an arfajata of fixed size and provide

sub-views of contiguous parts of the managed array. Allsste data (both through
Teuchos::ArrayRCP::operator]] and iterators) is run-time checked in a debug build.

GCG 11 Always returnPt r , RCP, Ar r ay Vi ew, andAr r ay RCP smart pointer objects by value,
never by referencgsee Tables 5 and 6): Returning smart pointer objects hyevialcritical for
properly setting up the machinery for persisting and seemnsigting associations and to fully enabled
debug-mode checking [1].

GCG 12 Only return a raw C++ reference from a function for non-pestang associaitons and use
the reference and discard it in the same same statenisee Tabless 3 and 4): Raw C++ references
cannot be used to detect dangling references in a debug-budldeand therefore should only be
used for non-persisting associations [1].

GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-jgérgj association(see Tables|3, 4/ 5,
and 6): Objects of typ€tr andArrayView are light-weight and efficient in a non-debug mode build
but are fully checked in a debug-mode build and thereford teaafe efficient code [1].

GCG 14: When raw C++ pointers must be exposed (i.e., due to intemtawiith non-compliant
code), minimize the amount of code exposed to the raw poMteen raw C++ pointers must be

11

exposed to communicate with other code that uses raw C++gosjrencapsulate the raw C++
pointer as fast as possible and then only give up a raw paattide last possible moment. For
example,

SomeForeignClass* get_raw_foreign_obj_ptr();
do_some_foreign_stuff(SomeForeignClass* foreign_obj_ ptr);

void foo()

{

Il Get the raw pointer into a proper encapsulated class objec t right away!
Ptr<SomeForeignClass> foreignObj(get_raw_foreign_obj _ptr());

Il Lots of code ...

Il Only expose the raw pointer directly in the foreign functi on call
do_some_foreign_stuff(&*foreignObj);

Object Control

e GCG 15: Accept user options at runtime througheuchos: : Par anet er Li st object by
deriving from theTeuchos: : Par anet er Li st Accept or interface The
Teuchos::ParameterList class provides many useful features that make it easy tghaser
options in a flexible and fully validated way (see Teuchosuteentation for more details). The
Teuchos::ParameterListAcceptor interface defines a consistent flexible protocol for setéind
managing a parameter list.

e GCG 16: Fully validate all parameters and sublists in accepliesuchos: : Par anmet er Li st
objects usingyal i dat ePamat er s(. . .) and other meansAll user parameters and sub-lists

passed in through Beuchos::ParameterListAcceptor should be fully validated. The main tool
for this is the member functiovalidateParameters(...) . Using this function and other other
approaches, when a user misspells a parameter or subskst tiie wrong type for a parameter, or
provides an invalid parameter value, they will get an exioepthrown with a helpful error message.
Also, objects are only responsible for validating their gparameters and sub-lists, and not those of
other objects that they hold sub-lists for.

Object Introspection

e GCG 17: Always send output to some genesald: : ost r eamobject; Never send output directly
tostd:: cout orstd:: cerr;Never printoutput withprint(...) orprintf(...):
Sending output directly tetd::cout orstd::cerr destroys the flexibility of numerical software
and does not perform well in SPMD programs. Instead, produteut using one of the following
approaches.

Prefer to print output through &euchos: : FancyOSt r eamobject instead of through a bare
st d: : ost r eamobject to more easily produce indented formatted output
Teuchos::FancyOStream class object can wrap amsyd::ostream object and helps to produce
structured indented output and to create more readableibutan SPMD program (even when
every processor produces output).

12

e Derive fromTeuchos: : Descri babl e and implement the functiomescri pti on() and
descri be() to allow clients to print the current state of an obje@he Teuchos::Describable
interface is the appropriate way to allow clients to prire turrent state of an object in a flexible
way. The verbosity of the output is controlled by an inputramparameter.

e Derive fromTeuchos: : Ver boseOhj ect and print to*t hi s- >get OSt r ean() to give
information about what an object is doin@lients can set the output stream and the verbosity level

through a parameter list (see theuchos::ParameterListAcceptor interface described above) or
can set them directly in code. If no output stream is set, then
Teuchos::VerboseObjectBase::getDefaultOStream() will be used.

e As a last resort, always prefer printing to
* Teuchos: : Ver boseObj ect Base: : get Def aul t OSt r ean() instead ofst d: : cout or
st d: : cerr: The stream provided b¥feuchos::VerboseObjectBase::getDefaultOStream()
is set up by default to do clean printing in an SPMD program @amalso be set up through a
Teuchos::CommandLineProcessor object to control how output is produced and formatted.

Miscellaneous coding guidelines

e GCG 18 Prefer to explicitly specify template arguments in a tertgofanction call to avoid
protability problems and enable implicit covnersions gfuhargumentsilf it is not too inconvenient,
then preferring to explicitly define the template arguments template function call can massively
improve the portability of templated C++ code. For examlelhyra, every non-member function
is templated on th8calar type such as:

template<class Scalar>
sum(const VectorBase<Scalar> &x);

When portability is a concern or when implicit conversionghe input arguments are needed, then
prefer to call such functions by specifying the templateuargnt(s) as:

Scalar mySum = sum<Scalar>(myVec);

e GCG 19 Use the template functioheuchos: : as<Tt o>(T_f r on) for all conversion of value
data types that may result in loss of precision or in an ineotrconversionThe templated C++
function Teuchos::as<T _to>(T _from) and the class specializations that it calls will contain
run-time tests, in debug mode, for the results of a convergi@nsure correctness. This includes the
conversion of strings into numbers (i.e. replacatgf() andatoi()) as well as conversions that
can result in loss of precision or meaning (sucli@sle toint ,long int toint ,int tochar,
unsigned int toint , etc.). The optimized implementations of these converiioctions are
typically unchecked for speed. A version this function whiadways does run-time checking is also
available called’euchos::asSafe<T _to>(T _from) in order to validate user data.

Justification Unchecked conversions are the result of many differerdgyqf errors and a fully safe
program needs to be able to check all such potentially urtgafeersions at run-time. The implicit
conversion rules allowed in C which where carried over to Ca result in very unsafe code.

e GCG 20: Use namespace enclosure for the definition of C++ class menibae member functions
of a class should be defined in the same order as their dectesand should generally be defined
within a namespace enclosure. For example, given the @giclarof

13

/I SomeNamespace_SomeClass.hpp
namespace SomeNamespace {
class SomeClass {

public:
void someFunc();

b

} /I namespace SomeNamespace

the safest and tersest ways to define the member functiohe source file is

/I SomeNamespace_SomeClass.cpp
namespace SomeNamespace {

void SomeClass::someFunc()

{
-

} /I namespace SomeNamespace

Justification Using the namespace enclosure insteadusiry namespace SomeNamesapce
directive insures that you can never accidentally proviuetlzer definition for some other class
member function in another namespace. Explicit namespaakfigation is not needed since if one
misspells any part of the prototype, then the compiler \g#lie an error message.

e GCG 21 Use explicit namespace qualification for the definition bhahmember C++ functions
For example, for the nonmember function prototype

/I SomeNamespace_someFunc.hpp
namespace SomeNamespace {
void someFunc(const int data);

} /I namespace SomeNamespace

the safest way to define the nonmember function is

/I SomeNamespace_someFunc.cpp

14

void Thyra::someFunc(const int data)

{
-

Justification Using explicit namespace qualification avoids problemspafiling and other mistakes
that can accidentally result in the definition of a new fumetj9, Section 8.2]. Such a mistake is
caught at link time but it can be very hard to figure out the aitse of the problem when this
happens.

GCG 22 For general functions, prefer to list function argumentghie order of input, input/output,
output, and finally optional arguments with default vatueer example:

void someFunc(
const T1 &argl, II' Input
const Ptr<T2> &arg2, /I Input/Output
const Ptr<T3> &arg3, /' Output
const int argd = 0 /I Optional input argument with defualt val ue

);

This ordering of arguments is only a general suggestion afemeht ordering of arguments may be
chosen based on other criteria. See Section 5.2 for a désorigf the use of th@tr class.

GCG 23 For non-member object functions, list the object as the éirgument passed in as a const
reference or non-const referendeor example:

void someModifyingFunc(
SomeClass &obj,
const int argl,

)

void someNonModifyingFunc(
const SomeClass &obj,
const int argl,

);
Note that in the case abmeModifyingFunc(...) , the output argument is listed first instead of
after the input argument(s) which breaks typical conventibhaving input/output arguments (which
all objects that are modified are) come after input argumethisvever, this is more consistent with
established convention such as in Python and other langwalgere theself argument is always the

first explicit (or implicit) argument. Note that this is alassituation where a non-const reference
argument makes the most sense.

GCG 24: Preferenuns tobool s as formal function arguments when conversion mistakes are
likely: While the built-in typebool is very convenient to use as a formal function argumentsi al
allows for conversions from every built-in type and everyrper type. While using an enumeration
type and its values is more verbose, it is also self documegratnd is safer. For example, what does
the third argument mean in the following example?

15

apply(A, 2.0, true, x, y);

When thebool argument is changed to an enum, the function call becomes:

apply(A, 2.0, USE_TRANSPOSE, x, v);

and the meaning is much more clear. Therefore, when selfrdentation and compile-time safety
are important, prefer to define and ws®ms overbool s as formal function arguments (see [7,
Section 12.6]).

GCG 25: Avoid overloading virtual functiongOverloaded virtual functions cause sever portability
problems with many compilers and result in shadowing waysithat are elevated to errors in may
systems [8, Item 33].

GCG 26: Avoid overloading functions on different smart pointerayge.g.RCP, Pt r , etc.)
Overloading functions on different smart pointer typessasRCPor Ptr can create ambiguous
function calls that will not happen when using raw C++ paisiter references [1]. Therefore, keep
the names of the functions different such as shown below.

void nonconstFoo(const RCP<A> &a);
void foo(const RCP<const A> &a);

GCG 27: Include only standard C++ headersc X>, not standard C headersX. h>, and avoid all
usi ng nanespace st ddirectives Only include the C++cX> versions of the standard C
<X.h> headers. For example, includemath>, <cstdlib> , and<cassert> instead okmath.h> ,
<stdlib.h> , and<assert.h> . Avoid all uses ofusing namespace std directives and instead
prefer explicit namespace qualification suctstssqrt ~ or using declarations such asing
std::sqrt only within function definitions. See [9, Section 16.1.2] éocomplete list of the
standard C++ versions of the standard C headers.

Justification See Appendix D for a clarification of Item 59 in [10] dealingtlwthe issue ofising
declarations and directives.

GCG 28 Break up templated code into four fil8eneCl ass_decl . hpp,

SomeCl ass_def . hpp, SoneCl ass. hpp,andSoneC ass. cpp to support both implicit and
explicit instantiation, minimize recompilation, and ad@roblems in mutually dependent (i.e.
circular) declarations Breaking up templated C++ code into the four files

SomeClass|[_decl, _def].[hpp,cpp] (as described below) allows for a portable and bullet-proof
solution to handing templated C++ code which allows for ajtagled explicit or implicit template
instantiation, b) minimization of first-time compilation) minimization of recompilations, and d)
handling of any and all types of circular dependency in datiens and definitions (same as are
allowed with non-templated C++ code).

As an example, consider three clasaeB, andC whereA andB refer to each other and whe@ehas
no chance of being involved in a circular reference invajvirandB. The four files

AJ _decl, _def].[npp,cpp] for classA as well as the fil&_decl.hpp are shown below (the other
files for classB are similar):

16

II' Ahpp

#include "A_decl.hpp"

#ifndef HAVE_THYRA_EXPLICIT_INSTANTIATION
include "A_def.hpp"

#endif

/I A_decl.hpp

#ifndef A_DECL_HPP
#define A_DECL_HPP

#include "B_decl.hpp" // Only include decl in case of circul
#include "C.hpp" /I No chance of cicular ref

namespace Thyra {

template<class Scalar>
class A {
pubic:
void doSomething(const B<T> &b) const;

private:
RCP<C<T> > c_;
3

} /I namespace Thyra

#endif // A_DECL_HPP

/I B_decl.hpp

#ifndef B_DECL_HPP
#define B_DECL_HPP

namespace Thyra {
template<class Scalar> class A; // Forward only due to circu

template<class Scalar>

class B {
pubic:

void doSomething(const A<T> &a) const;
I3

} /I namespace Thyra

#endif // B_DECL_HPP

17

ar ref

lar refl

II' A_def.hpp

#ifndef A_DEF_HPP
#define A_DEF_HPP

#include "B.hpp" // Must include for implicit instant to wor
namespace Thyra {

template<class Scalar>
void A::doSomething(const B<T>& b)

b.doSomething(*this);
}

} /I namespace Thyra

#endif // A_DEF_HPP

I A.cpp
#include "A_decl.hpp" /I Helps test header sufficiency
#ifdef HAVE_THYRA_EXPLICIT_INSTANTIATION

#include "A_def.hpp"
#include "Teuchos_ExplicitinstantiationHelpers.hpp"

k!

namespace Thyra {TEUCHOS_CLASS_TEMPLATE_INSTANT_SCALR_TYPES(A)}

#endif // HAVE_THYRA_EXPLICIT_INSTANTIATION

General client code alwayscludes theéA.hpp form of the file without regard for whether implicit or
explicit instantiation is enabled or not (i.e. whett#&VETHYRAEXPLICIT _INSTANTIATION is

defined or not defined).

The 100% bullet-proof rules for breaking up template coke this are:

— All header-like declarations that would go into an ordinapn-templateé.hpp header file go
into SomeClass _decl.hpp including class declarations and inline function defimso

— All implementation code that would go into an ordinary nemplate*.cpp source file go into
SomeClass _def.hpp including class member definitions and non-member funaligimitions.

— Always includeSomeOtherClasss _decl.hpp in theSomeClass _decl.hpp file if there is any
chance that a circular dependency may exist between theypes$omeOtherClasss and
SomeClass . Otherwise, if there is no chance of a circular dependenee tihe header
SomeOtherClasss.hpp should be included (instead of the possildecl.hpp form). If the
two classes are in different libraries then there is no chari@ circular type dependency

(because well designed software does not allow this [6]).
— If SomeClass _decl.hpp includesSomeOtherClass _decl.hpp

, thenSomeClass _def.hpp

must includeSomeOtherClass.hpp . This is needed in order for implicit instantiation to work

correctly.

18

— The header fil&omeClass.hpp is designed to be included by general clients and either
includes onlySomeClass _decl.hpp or also includesomeClass _def.hpp depending on if
implicit or explicit instantiation is being used. When egfilinstantiation is being used the file
SomeClass _def.hpp is hidden from general clients and changes in it do not requir
recompilation of client code. The fikomeClass.hpp can (and should) be automatically
configured by the CMake build system (see examples in thgf@®akeLists.txt).

— All required instantiations must be provided in the femeClass.cpp . For standard scalar
types (e.gdouble , float , std::complex<double> , std::complex<float> , etc.) the
standard macréEUCHOSCLASS TEMPLATEINSTANT_SCALARTYPES(...) is provided which
is set at configure time to determine the desired/requirgticixinstantiations. More general
instantiations can also be performed by defining a macrodriithSomeClass _def.hpp file
and then instantiating this macro using the helper macro
TEUCHOSVACROTEMPLATEINSTANT_SCALARTYPES(...) (See examples from real Thyra
source code).

If one follows the above guidelines, one will never have aejemcy ordering problems with
templated code. The partitioning the template code intdahefiles

SomeClass|[_decl, _def].[hpp,cpp] gives template code all the desirable compilation properti
of non-template code. That is, changes to the implementafiSomeClass only require the
recompilation of the source fileomeClass.cop and not any other source files. Also, the amount of
code that a C++ compiler has to see to compile any singde file is much less when explicit
instantiation is enabled and this can massively speed ugifitre compilation. Overall, explicit
instantiation can massively speed up first-time compitaéind later recompilations as code is
modified.

5.2 Specification of data members and passing and returningogects from functions

The guidelines for specifying local variables and data mensilpassing objects to and from functions, and
returning objects from functions given in [1] are summadine Tables 1-6. In general, it is assumed that
arguments passed through the smart pointer tPresRCR ArrayView , andArrayRCP are non-null by
default. If the argument is allowed to be null, then that nhestlocumented in the Doxyg¶m field

for that argument.

19

Class Data Members for Value-Type Objects

Data member purpose

\ Data member declaration \

non-shared, single, const object

const S' s _;

non-shared, single, non-const object

S s

non-shared array of non-const objects

Array<S> as _;

shared array of non-const objects

RCP<Array<S> > as

non-shared statically sized array of non-const objectsple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;

shared fixed-sized array of const objects

ArrayRCP<const S> as _;

shared fixed-sized array of non-const objects ArrayRCP<S> as _;

Table 1. Idioms for class data member declarations for value-type ob

jects.

Class Data Members for Reference-Type Objects

Data member purpose \

Data member declaration

non-shared or shared, single, const object

RCP<const A> a _;

non-shared or shared, single, non-const ob

eREP<A> a;

non-shared array of const objects

Array<RCP<const A> > aa

non-shared array of non-const objects

Array<RCP<A> > aa _;

shared fixed-sized array of const objects

ArrayRCP<RCP<const A> > aa _;

... (const ptr)

ArrayRCP<const RCP<const A> > aa

shared fixed-sized array of non-const objec

[ArrayRCP<RCP<const A> > aa _;

..." (const ptr)

ArrayRCP<const RCP<const A> > aa

Table 2. Idioms for class data member declarations for referenpesy

objects.

20

Passing IN Non-Persisting Associations to Value Objects &inc Args

Argument Purpose | Formal Argument Declaration \

single, non-changeable object (requiredy) s or const S's or const S &s

single, non-changeable object (optionalyonst Ptr<const S> &s

single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuags
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objectsonst ArrayRCP<const S> &as
array of changeable objects | const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as lrg Args
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objegtsonst Ptr<ArrayRCP<const S> > &as
array of changeable objects | const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objestas Func Args
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objegtsonst Ptr<ArrayView<const S> > &as
array of changeable objects | const Ptr<ArrayView<S> > &as

Table 3. Idioms for passing value-type objects to C++ functions.

21

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

djonst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu€bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vad) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Pir<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

Table 4. 1dioms for passing reference-type objects to C++ functions

22

Returning Non-Persisting Associations to Value Objects

Purpose | Return Type Declaratiot

Single copied object (return by value) | S

Single non-changeable object (requiredonst S&

Single non-changeable object (optionalPtr<const S>

Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>

Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
| Purpose | Return Type Declaratior)

Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
| Purpose | Return Type Declaration
Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Table 5. Idioms for returning value-type objects from C++ functions

23

Returning Non-Persisting Associations to Reference (or ae) Objects

Purpose | Return Type Declaration |
Single cloned object RCP<A>

Single non-changeable object (requirgdjonst A&

Single non-changeable object (optionalpPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects

ArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Returning Persisting Association

s to Reference (or Valuepbjects

| Purpose

| Return Type Declaration |

Single non-changeable object

RCP<const A>

Single changeable object

RCP<A>

Array of non-changeable objectsAr

rayView<const RCP<const A> >

Ar

Array of changeable objects

rayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Re

turn Type Declaration \

Single non-changeable object

Ptr<const A>

Single changeable object

Ptr<A>

Array of non-changeable objec

sArrayView<const Ptr<const A> >

Array of changeable objects

ArrayView<const Ptr<A> >

Table 6. Idioms for returning reference-type objects from C++ func-

tions.

24

6 Formatting of source code

At the minimum, source code should be formatted consistevithin a single file or a set of tightly

coupled files [10, Item 0]. Ideally, source code should benfitted consistently enough across a code
project so as not to cause undue difficulty in shared mainiemand in performing code reviews [7]. Some
consistency in formatting helps and to facilitate multiplenership and shared development of a collection
of software, such as in Extreme Programming (XP) [2] (seeehplix E for an outline of the arguments for
adopting a consistent code formatting style). By “fornmagtiwe generally refer to the use of white-space
in the line-to-line formatting of the program or in the oritgy of lines of code such that the meaning of the
program to the compiler is unchangetihe handling of indentation styles can largely be autorfatédch
allows individual developers to work with any style they Wblike for files that they create but also makes
it easy for developers to edit files created by other devetoprd keep to their styles as well. Appendix F
gives some guidelines for how individuals should conduetiibelves where more than one code
formatting style is in use within a project.

Our main goal in this section is to try to provide reasonabmmendations for those formatting issues
that are largely a matter of style and personal preferentattibe same time affect the overall readability
of the code and promote pair programming and joint ownershigonde [2]. The formatting and indentation
guidelines presented here are largely consistent withébemmendations in [7, Chapter 31] and try to
reduce the amount of “right drift” that can occur with somentoon formatting and indentation styles.

The indentation guidelines outlined below can be largelpmatically supported by Emacs and are used
by the custom style “thyra” defined in the Emacs package fi-Imyca-stersE. Other custom styles can
also be added to this file and used as well. Any of these stglede listed in each source file and therefore
anyone using Emacs can automatically use a particular fatien style without having to fight the editor

to manually reformat code to abide by a foreign style.

6.1 General formatting source code principles (FSCP)
Some general principles of good formatting, based on theud&on in [7, Section 31.1], are:

e FSCP 1 Formatting should accurately and consistently show the&kdgstructure of the coddt is
somewhat subjective what formatting styles “show the lalgstructure” of code but McConnell
makes some good arguments for some styles over others. leqvitag up the group of
programmers to decide as a group what style items “show tjiedbstructure”.

e FSCP 2 Formatting should improve the readability of the code forstqmeople There are specific
studies cited in [7, Chapter 31] that provide good evidengaréfer some styles over others.

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for those
modifications performed by automated todhanging one line of code should not require changes
to other lines of code to maintain the formatting style.

SWhile technically changing the name of a class, functionastable changes the meaning of a program, if name changes are
done in such a way as to avoid name collisions, then namingecions also do not affect the meaning of the program and are
therefore very much related to other formatting issues sisciine treatment of “white-space”.

4Emacs supports multiple file-specific formatting styles@sr+ and tools like Artistic Style [4] can format source filesrf
the command line. A flavor of thé editor may also support indentation styles.

5SeeTrilinos/packages/thyralemacs/README for a description of the “thyra” Emacs style

25

e FSCP 4 Formatting style should follow the most common idiom untegsof the above principles
are violated When there is no good technical argument for one formatigte choice over another,
then the style choice that is the most common should bePudeis is not advocated per-say in [7,
Chapter 31] but it is a good idea in general to follow poputhoiins when there are several equally
good choices and therefore the decision is arbitrary. Heweawt selecting a single style choice can
create artificial complexity in the code from irregularity formatting.

6.2 Specific guidelines for formatting source code (FSC)

Below, specific recommendations are spelled out that trptdarm to common practices but also try to
avoid excessive “right drift”:

e FSC 1 The formatting style in any single file or group of closehated files should be the same
Consistent formatting includes the placement of bracesntimber spaces to indent etc.
Justification This is recommended in [10, Item O].

e FSC 2 Try to keep all text within the first 80 character columK&eping most of the source code
within the first 80 character columns helps to make the codemeadable and helps to facilitate
side-by-side two-column editing and comparisons of soaozie. Most of the style and indentation
guidelines described below help to avoid code that extergerd the 80th column too rapidly.
Justification “Studies show that up to ten-word text widths are optimaleige tracking” [10, Item
0]. Also, some developers are still stuck with 80 column wigleninals.

e FSC 3 Indent with spaces and not tabs (two spaces by defaliti amount of spaces to use per
indentation level is up to the individual developer but ageintation of onlytwo spacess
recommended (and is set in the ‘Emacs ‘thyra” indentatigtestA study showed that an
indentation offset of two-to-four spaces was optimal fadeoeading comprehension [7, Section
31.2]. Whatever indentation amount is used, it should baistent in at least each source and header
file [10, Item 0] (which can be enforced using a custom Emadsritation style). Emacs by default
will put in a tab when the tab-width is equal to the number aleintation spaces. Emacs can be told
to always use spaces instead of tabs by setting:

(setq indent-tabs-mode nil)

in the indentation style (as is done in the “thyra” style).wéwer, it is easy to support different
preferences for the amount of spaces to indent by using adesieied indentation style for Emacs
(sorryvi users).

Justification “Some teams legitimately choose to ban tabs ... when nmistisen indenting into
out-denting and non-denting.” [10, Item 0].

e FSC 4 Use two vertical spaces to separate class declarationgtium definitions, namespace
enclosure bounds, and other such major entries in a file

Justification Using two black spaces is preferable to long lines with siittee like -’ or '=" or other
separators and they clearly separate the entities and sigx @amaintain (see [7, Section 31.8]).

6The measure of the commonality of a particular style chome loe determined according to a local software development
community or the larger developer community.

26

e FSC 5 Do not indent source code inside of namespace enclosusdsainh use commented end
braces Indenting for namespace enclosures results in unnegessal in some cases excessive,
indentation. Instead, for example, use:

namespace MyNameSpace {

namespace MylnnerNamespace {

class SomeClass {.};

void someFunc(...) {...}

} /I namespace MylnnerNamespace

} /I namespace MyNameSpace

Above, note that two vertical blank lines are used betweeh e&the major entities (see above
item).

Justification While indentation within namespaces is helpful in sma#iraple code fragments, it
provides little help in showing namespace structure in meadistic code. The use of commented
end braces is generally sufficient to show namespace steuatul will not result in excessively
indented code. In addition, typically, each file will onlyr¢ain code from one (or more nested)
namespace and therefore indenting for namespaces prowdeseful information. Not indenting for
namespace enclosures is also consistent with the “ansi*kith, and the “linux” styles as defined by
Artistic Style [4].

e FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming before
pr ot ect ed members coming befop i vat e members and indented as shown in Figure 1

Justification This ordering of sections and data members is quite commo8dction 31.8]. Above,
we show private member functions after private data memiace private data members are more
prominent and more common in the class implementationsdhaprivate member functions. Also,
private types (where typedefs are most common) must bel liséore they are used in the
declaration of the private data members. Note that pubpiegyused in public member functions
must be listed above (or at least forward declared) bef@etlblic member functions that use them.

e FSC 7. List short function prototypes on one line and longer prgpeis on multiple lines, indenting
arguments one unitBelow, guidelines for formatting short function protoggand long prototypes
are given. These guidelines seek to produce function preéstthat are fairly tight (i.e. not too
much white-space explosion), are robust to modificationd,keep code inside of the 80th character
column. This indentation style can (and should) also beiegpb function definitions and function
calls.

— List short function prototypes on one line if possitf®r example,

ReturnType someFunction(int arg = 0);

27

class SomeClass {
Il Friends
friend void foo();
friend class SomeOtherClass;
public:
Il Public types
typedef int integral_type;
/I Public member functions
void funcl();
protected:
Il Protected member functions
void func2();
private:
Il Private types
typedef std::vector<int> int_array t;
Il Private data members

int datal ;
int_array_t arrayl ;

/I Private member functions

void func3();

Figure 1. Example of suggested layout of a C++ class declaration com-
plete with ordering of sections, indentation, and line spgc

28

or

ReturnType someFunction(int arg=0);

or some other style for white-space within ’(...)" but theeopg '(' should come directly after
the function name in all cases.

For longer prototypes, indent arguments on continuatioedi one unitFunction prototypes
that cannot approximately fit on a single line in the first 8@releter columns should have the
function arguments listed starting on the second line with onit of indentation (e.g. two
spaces) from the function return type and function name ke example, several different
valid formats for a longer function prototype are:

ReturnType someFunction(
int argl,
bool arg2,
const ArrayView<double> &arg3,
const std::string &argd = "

);

or

ReturnType someFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std::string &argd = "

);

or

ReturnType someFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std::string &argd = ");

or

ReturnType someFunction(int argl, bool arg2,
const ArrayView<double> &arg3, const std::string &argd = " ")

As shown above, the function arguments can be listed sebat different lines, or in groups
on sets of lines. The arguments can begin on the same line &g + function name line or
can start on the next line. The ending parenthesis ’)’ carappn the same line as the last line
of arguments or can appear alone on the last line. Other tsrara possible also and can be
appropriate in different situations.

Justification See [7, Section 31.1].

Return types can be listed on same line as the function naresaitiie line is too longA
function prototype’s return type should appear on the sameedls the function name unless itis
excessively long and would result in the return type + fumtiame line to extend past the
80th character column. When the return type + function nated long, then it can be listed
on separate lines with no indent, for example, as:

29

Teuchos::RCP<ReturnType>
someVeryLongAndVerylmportantFunction(
int argl, bool arg2, const ArrayView<double> &arg3,
const std:string &argd = "

);

However, listing the function return type on a separate éiven in cases of shorter prototypes
is also okay.

e FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of those
entities For example, one should order the definitions of a set oftfans the same as the ordering
of the declarations. Maintaining the ordering of definisand declarations makes the code more
readable and more maintainable. For example, if the funalifinitions are ordered the same as the
declarations, it can be easy to spot that a function definianissing (i.e. which could be the cause
of the link error that you are seeing).

e FSC 9 Use “modified K&R” or “ANSI” style for the placement of braceséindentation of control
structures Two basic styles of brace placement and indentation inrobstructures are recommend
here. The first general style is a modification of the K&R J#jevhere the brace comes
immediately after the control statement on the same linevalas:

/I Modified K&R Style (recommended)
if (someCondition) {

}

else {

}

Note that the pure K&R style (for example, as defined by AdiStyle [4]) shown as:

/I Pure K&R Style (*NOT* recommended)
if (someCondition) {

} else {
=

is not recommended. Even through pure K&R style meets McElgsistrict pictorial definition of
“emulation of pure block style” (i.e. the equivalent to piieck format such as in Visual Basic)
which he says is good, he actually recommends the above bR style (as do we since we
feel it is more readable).

The second general style that is recommended is the “ANSI&[gf] where the opening brace begins
flush on the next line from the control statement shown as:

/I ANSI Style (recommended)
if (someCondition)

{

30

else

Both the modified K&R and the ANSI styles help to avoid righftdiThe modified K&R style

creates tighter code vertically and seems to be preferreddsyy communities and authors but
variations of the ANSI style are also very common. Note thatANSI style seems to have a distinct
advantage in cases where the control statement is contouesdnultiple lines. For example, the
modified K&R style with line continuations looks like:

/I Modified K&R Style with line continuations (*NOT* recomm ended)
if (someLongCondition &&

anotherVeryLongCondition &&

theLongestConditionThatWillFitOnOneLine) {

Il Statements

and it is hard to argue that this shows the logical structfi@mde. One could argue that the ANSI
style which looks like:

/I ANSI Style with line continuations (recommended)

if (someLongCondition &&
anotherVeryLongCondition &&
theLongestConditionThatWillFitOnOneLine)

{

/I Statements

better shows the logical structure of the code in clearhas&ing the control structure logic from the
inner block of code.

Note that while the modified K&R style meets McConnell’s kiag of “showing the logical
structure of code” where he refers to it as “emulating puoekl format that he cites the ANSI
styles as violating this principle [7, Section 31.1]. Howg\it is somewhat subjective what styles
“show the logical structure” and McConnell himself seemsdatradict himself at times (see the
formatting of if/else statements below).

When choosing between one of these styles, try to be constéeast within a single file.
However, for control statements that extend over a singke, lprefer the "ANSI” style.

Below, the application of the modified K&R style and the ANSlas are shown in the context of
several different types of C++ loop and control structures.

— Formatting if/else if/else statement&/hen applied to if statements, the two recommended
styles are:

31

/I Modified K&R Style (recommended)
if (someCondition) {

}

else if (someOtherCondition) {

}

else {

}

and:

/I ANSI Style (recommended)
if (someCondition)

{
-

else if (someOtherCondition)

— Formatting switch/case statemenishe two recommended formats for switch/case statements
are:

/I Modified K&R Style (recommended)
switch (someEnumValue) {
case ENUM_VALUEL:

break;
case ENUM_VALUEZ2:

break;

default:
TEST_FOR_EXCEPT("Should never get there!");
}
and

/I ANSI Style (recommended)
switch (someEnumValue)

{
case ENUM_VALUEL:
break;
case ENUM_VALUEZ2:

32

break;
default:
TEST_FOR_EXCEPT("Should never get there!");

As shown above, every switch structure should hagefault case that throws an exception
(see “use the default clause to detect errors” in [7, Sedtto]).

Also, if needed, the case blocks can be wrapped in braces as:

/I Modified K&R Style (recommended)
switch (someEnumValue) {
case ENUM_VALUEL: {

break;
}
case ENUM_VALUE2: {

break;
}
default: {

TEST_FOR_EXCEPT("Should never get there!");

}
}

and

/I ANSI Style (recommended)
switch (someEnumValue)

{
case ENUM_VALUEL:

{

break;
}
case ENUM_VALUEZ2:

{

break;
}

default:

{
TEST_FOR_EXCEPT("Should never get there!");

}
}

— Formatting for and while loopsThe two recommended styles for formatting for loops are:

/I Modified K&R Style (recommended)
for (inti=0;i< size; ++) {

}

33

and:

/I ANSI Style (recommended)
for (inti=0;i< size; ++)

{
-

Note that line continuations are often needed for a for lamp¥rol structure, especially if long
type names or variable names are used. In these cases, tHes#h¢Ss more highly
recommended as:

/I ANSI Style (recommended)

for (
std::vector<SomeVeryLongClassName>::const_iterator i tr = longVarName.begin();
itr != someLongVariableName.end();
+Htr)

{
-

Similarly, while loops should be formatted as:

/I Modified K&R Style (recommended)
while (someCondition) {

}

or:

/I ANSI Style (recommended)
while (someCondition)

{
-

34

7 Doxygen documentation guidelines

In this section, a set of reasonable guidelines are statedrfting Doxygen (and plain old) documentation
for classes, functions, etc. that makes the specificatiear dlut is not too verbose or hard to maintain.
While other types of higher-level documentation are alsedeel such as design documents and tutorials,
guidelines for these other types of higher-level docuntemtaare not covered here.

7.1 General principles for function and class level documeation (DOXP)

e DOXP 1: The level of documentation should vary depending on theipemmoe and/or the role of
the software entity or collectioimportant interfaces or widely disseminated concretesga or
functions require an appropriate level of precise docuat@mi. Concrete implementations that are
less widely disseminated can provide less (or none in sosesg®oxygen documentation if the
implementation code itself is sufficiently easy to underdtaHowever, major parts of an
implementation should have at least some plain old (i.e-Doxygen) documentation to describe
the basics of what is going on.

DOXP 2: Important abstract interfaces must be fully specified irmhelent of any single concrete
implementation (i.e. preconditions, postconditionsamants, etc.) In the case of important abstract
interfaces, the full specification of behavior for the coiapt objects (i.e. invariants, preconditions,
postconditions) must be clearly stated [10, Item 69]. Ins@ases, this must be done completely
within the Doxygen documentation for the interface. In otb&ses, standard unit testing code can be
used to help specify the behavior of the interface. In famgiled and verified unit testing code
may be superior to standard Doxygen documentation sin@nita@ be ignored and cannot become
invalid. On the other hand, it may be difficult for readers tade through unit testing code to find the
specification of behavior and therefore both Doxygen docuat®n and unit testing code should be
used to provide the fullest benefit. Also, Doxygen documt@riecan automatically include bits and
pieces of compiled and tested code using\t@tinclude and related Doxygen commands.

DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentation @reconditions, postconditions,
invariants, etc.) This item is an amendment to the above item as a special ca4eskr” interfaces.
A "user” could be someone that simply writes client code ®ititerface or one that provides
implementations of the interface or both. User’s shouldbeoéxpected to study unit testing code to
figure out the preconditions and/or postconditions for afiom call.

DOXP 4: Wrong documentation is (almost) worse than no documemtati@ll: Documentation

must be maintained as code is changed and therefore excessimnecessary documentation that is
not rigorously maintained degrades the overall qualityasfes However, documentation with small
errors is generally better than no documentation at all.

DOXP 5: The same documentation should not be repeated in more tteplace if possibleWe
should strive for a single source for documentation for aityeand not repeat the same
documentation over and over again. This is critical to irghiat the documentation can be
successfully maintained.

DOXP 6: The documentation should maintain itself as much as pesaitdl be testable as much as
possible Any significant fragments of code that are shown in the Dexygenerated HTML

35

documentation should come from compiled and tested cods.c@in be accomplished by using the
\dontinclude or related Doxygen command to read in code fragments autcaigt In this way,
the compiler and our test suite can be used to help verify dde ¢ragments in our Doxygen
documentation.

7.2 Specific Doxygen documentation principles (DOX)

Now that some of the general goals for our Doxygen documient&iave been presented, more detailed
guidelines are given below.

e DOX 1: Write Doxygen documentation directly in header files witbudoented entitiesNriting
Doxygen documentation comments directly attached to esels, functions and other entities helps
make the documentation as tightly tied to the code as pes@bk “Keep comments close to the
code they describe” in [7, Section 32.5]). This has the unfate side-effect of requiring complete
recompilations whenever documentation is modified but trezadl benefits are usually worth the
disadvantages. Note that the Doxygen documentation caimipeesl out of Doxygen-generated
hyper-linked versions of the code, leaving clean C++ codbauit the clutter of detailed
documentation. Therefore, developers should browse Denaggenerated source code instead of the
source code directly when looking at the code and perforrooug reviews.

e DOX 2: Use a centralized set of definitions for common argumentsi@xes possibleUse clear and
consistent naming of arguments in multiple functions (wmitine same class and across as many
classes and functions as makes sense) and provide a cadrdéfinition of these arguments if
possible to avoid repeating detailed descriptions in eadlvidual function’s documentation. This
helps to avoid duplicate documentation that is likely ndbéamaintained correctly. In the case of
classes, this means providing some common definitions im#ia “detailed” documentation
section for the class. In the case of nonmember functioisniight involve a common Doxygen
group or module (i.e. using thalefgroup command) for the set of functions. In the case of
collections of nonmember functions, it may be difficult tgpegt readers to find the common
definitions, but links to the common documentation are bssising a variety of approaches.

e DOX 3: Provide typical pre- and postconditions along with the doemtation for common
arguments whenever possibleor common arguments that are shared among many functefisg
the most common preconditions for them in a central placesandl listing them on a
function-by-function basis unless they change for an iindial function. For a C++ class, place
descriptions for these common arguments in the main classndentation under gsection named
“Common Function Arguments and Pre/Postconditions”. Omtyude preconditions for these
arguments in specific function documentation sectionsisf different from the most common
preconditions.

e DOX 4: Add a\br i ef description for every entity that should be seen by the:uBlee \ brief
field is used to provide the short one-line documentationgthat is included in the function
summary section of classes, groups, namespaces etc. EwveteXt documentation is
needed/wanted, add an empty

[** \brief . */
void someFunction();

36

[** \brief Apply the linear operator to a multi-vector : <tt> Y =

* alpha*op(M)*X + beta*Y</tt>.

*

* \param M_trans [in] Determines whether the operator is app lied or the
* adjoint for <tt>op(M)</tt>.

*

* \param X [in] The right hand side multi-vector.

* \param Y [infout] The target multi-vector being transform ed. When

* <tt>peta==0.0</tt>, this multi-vector can have uninitia lized elements.

*

* \param alpha [in] Scalar multiplying <tt>M</tt>, where <t t>M==*this</tt>.

* The default value of <tt>alpha</tt> is </tt>1.0</tt>

* \param beta [in] The multiplier for the target multi-vecto ro<tt>Y</tt>.
* The default value of <tt>beta</tt> is <tt>0.0</tt>.

* <h>Preconditions:
* <tt>nonnull(this->domain()) && nonnull(this->ran ge()</tt>

* <tt>this->opSupported(M_trans)==true</tt> (thro w
* <tt>Exceptions::OpNotSupported</tt>)

* <tt>X.range()->isCompatible(*op(this)->domain()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <tt>Y->range()->isCompatible(*op(this)->range()) == true</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <tt>Y->domain()->isCompatible(*X.domain()) == tr ue</tt> (throw
* <tt>Exceptions::IncompatibleVectorSpaces</tt>)

* <Ji> <t>Y</tt> can not alias <tt>X</tt>. It is up to the cli ent to

* ensure that <tt>Y</tt> and <tt>X</tt> are distinct since i n general this
* can not be verified by the implementation until, perhaps, i t is too late.
* |If possible, an exception will be thrown if aliasing is dete cted.

*

*

* <p>Postconditions:

* Is it not obvious? After the function returns the muilti -vector <tt>Y</tt>
* is transformed as indicated above.

* <Jul>

*

void apply(

const EOpTransp M_trans,

const MultiVectorBase<Scalar> &X,
const Ptr<MultiVectorBase<Scalar> > &Y,
const Scalar alpha,

const Scalar beta

) const;

Figure 2. Example of more complete doxygen documentation for a
function. 37

comment so that Doxygen will include the class, functiomtbier entity in the HTML
documentation. Note that this is important when the Doxygmmfiguration optiorEXTRACTALL is
set toNQ

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments retion; do
not define partia\par amfield lists All arguments should be listed iyparam fields with at least the
[in], [out], or [in/out] specifications and these should bat least a very short description. Or, if the
function arguments are clear and trivial (and/or have dlydaeen defined in the common
documentation section), then kyparam fields for any of the arguments should be included at all. If
any of the arguments in a function’s documentation aredigte param fields then all arguments
should be listed inparam fields.

DOX 6: Only add a\r et ur ns field if necessary and if so refer to the return object as
returnVal : Don't add a\returns description of the return value if it is already clearly sified

in the\brief ~ description of the function. However, if the nature of theura value is at all complex,
then include areturns field to describe it. When referring to the return objecterdb it as
returnVal . By consistently using the identifiegturnval ~ for the return value, user’s will
immediately know what this is referring to.

DOX 7: Prefer specifying postconditions for output argumentsirt\par amfield; otherwise
specify their postconditions in the ’postconditions’:li§he postconditions for output arguments can
be listed directly in theparam field for the argument if they only involve just that arguména

fairly simple way. Otherwise, if the postconditions are moomplex or involve multiple arguments
in order to specify, then they can be listed in the postcammftlist. It may be difficult to objectively
determine the best place to list the postconditions for apudtargument.

DOX 8: Order the documentation fields in function documentatiohlas ef , \par am

Preconditions, Postcondition§r et ur ns, then detailed documentation; omitting those components
that do not apply A consistent ordering of sections of documentation forracfion makes it easier

for readers to find what they are looking for.

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a single clédss
nonmember function is most closely related to a single cthesn use th&relates field to cause

the documentation for the function to be listed with the stssdocumentation. This makes it easier
for readers to find out everything that they can do with a atdgect (or set of class objects) just by
looking at a single HTML page and a single summary list of fioms (which includes member and
nonmember related functions).

DOX 10: Provide detailed documentation for only the initial deetaon of a virtual function Only
provide detailed documentation of the initial declaratidra virtual function in the class where it is
first defined agirtual . In general, documentation should not be included for therales of
virtual functions in derived classes. Doxygen automaltjgalits in a link to the original virtual
function in the base class so readers are just one click awvaseting the detailed documentation.
Always add an empty

[** \brief . */
void someFunction();

comment for every class and every function that should beded in the HTML documentation but
where no text documentation is wanted or needed.

38

e DOX 11: Aggregate the overrides of virtual functions into groupsading their base clasg-or
example, the overrides of the virtual functions for freeichos::ParameterListAcceptor
interface would look like:

class SomeClass : public Teuchos::ParameterListAcceptor
public:

[** \name Overriden from Teuchos::ParameterListAccpetor

la{

** \brief . */

void setParameterList(
Teuchos::RCP<Teuchos::ParameterList> const& paramList

[\brief . */

Teuchos::RCP<Teuchos::ParameterList> getParameterLis

** \brief . */

Teuchos::RCP<Teuchos::ParameterList> unsetParameterL

[** \brief . */

Teuchos::RCP<const Teuchos::ParameterList> getParamet

** \brief . */

Teuchos::RCP<const Teuchos::ParameterList> getValidPa

la}

*/

t0);
ist();
erList() const;

rameters() const;

e DOX 12: Example source code used in Doxygen-generated and othmas fof documentation should
be extracted automatically from code that is compiled astetdnightly Any significant fragment of
example code that is shown in Doxygen HTML documentationlatex document needs to come
from compiled and tested code that can be updated autoithatithese C++ code fragments can be
selectively inserted automatically into Doxygen docuragah using thé dontinclude ~ Doxygen
command.

e DOX 13: Sample output should be generated automatically from deshpind tested codé&le
output included in Doxygen documentation should be geedratitomatically by the test harness
code and should be written to files that are included in thecgodirectory. The sample output in
these files can then be inserted into the Doxygen HTML doctmtien automatically using the

\verbinclude

39

Doxygen command. Similar approaches can also be used éxrdatcumentation.

[1]

[2]

[3]

References

R. A. Bartlett. Teuchos C++ memory management class@anis, and related topics: The complete
reference (a comprehensive strategy for safe and efficiemiany management in C++ for high
performance computing). Technical report SAND2010-2Z34hdia National Laboratories,
Albuguerque, New Mexico 87185 and Livermore, Californi9a, 2010.

Kent Beck. Extreme Programming Explained: Embrace Changddison-Wesley Professional,
2000.

Kent Beck and Cynthia Andre€xtreme Programming Explained: Embrace Change (2nd Editio
Addison-Wesley Professional, 2004.

[4] T. Davidson and J. Pattee. Artistic style 1.2p://astyle.sourceforge.net

[5]

[6]
[7]
[8]
[9]
[10]

Lockheed Martin. Joint strike fighter air vehicle c++ @ogl standards for the system development and
demonstration program. Technical report 2RDU00001 Revdgkheed Martin Corporation, 2005.

R. Martin. Agile Software Development (Principles, Patterns, andcicas) Prentice Hall, 2003.

S. McConnell.Code Complete: Second EditioMicrosoft Press, 2004.

S. Meyers.Effective C++: Third Edition Addison Wesley, 2005.

B. Stroustrup.The C++ Programming Language, special editiohddison-Wesley, New York, 1997.

H. Sutter and A. AlexandrescC++ Coding Standards: 101 Rules, Guidelines and Best Prastic
Addison Wesley, 2005.

40

A Summary of guidelines
NC (Naming conventions)

e NC 1. Capitalize C++ class and struct names 8eneCl ass.
e NC 2: Capitalize C++ namespace names @sneNaneSpace.

e NC 3: C++ enum type names should begin wittas ESome Enumand enum values should use all
caps and scope context SOVE_ENUM VAL UE.

e NC 4: C++ object instance identifier names should begin with a Ioease letter asoneObj ect .

e NC 5. C++ class data member names should begin with a lower-caser land end with an
underscore asoneDat aMenber _.

e NC 6: C++ function names should begin with a lower-case lettesasreFunction(...).

e NC 7: Name C++ pure abstract base clasfisobBas e, default implementation base classes
Bl obDef aul t Base, and default concrete implementation clasBe$ aul t TypeABI ob.

e NC 8: Prefer to name const and non-const access functioggea#art () and
get Nonconst Part (), respectively

NOSF (Naming and organization of source files)

e NOSF 1 Use file extension names hpp (C++ header),*. cpp (C++ source),* . h (C header),
and=* . ¢ (C source)

e NOSF 2 Include only one major C++ class with supporting code per dieraand source file with
name(sNaneSpaceA.l nner Nanespace_SoneCl ass. [hpp, cpp] .

e NOSF 3 Use internal include guards in all header files
GCG (General coding guidelines)

e Error handling

— GCG 1 UseTEST_FOREXCEPTI O\(. . .), TEUCHOS ASSERT(. . .) and related
macros for reporting all errors, even developer programgnarrors

e Memory management

— GCG 2 Avoid the use of raw C++ pointers in all but the very speciedisiturations
— GCG 3. Usest d: : stringinstead ofchar * orconst char*

— GCG 4 UseTeuchos: : Pt r as function arguments and return types in the place of raw
C++ pointers to single objects for non-persisting and sqraisisting associations

41

— GCG 5. UseTeuchos: : RCPfor memory management of single dynamically allocated
objects and for handling persisting associations

— GCG 6: Use non-member constructors for all reference-type ckasséorce dynamic
allocation returning strong owningeuchos: : RCPobjects

— GCG 7. Specify “generalized view” semantics for all views of abstrobjects

— GCG 8 UseTeuchos: : ArrayVi ewas function arguments and return types in the place of
pointers into raw arrays or other container classes for mmrsisting and semi-persisting
associations and where the array does not need to be resized

— GCG 9 UseTeuchos: : Arrayin place ofst d: : vect or as a contiguous general
purpose data container

— GCG 10 UseTeuchos: : Ar r ayRCPfor memory management of dynamically allocated
objects stored in contiguous arrays of data and for pensgsssociations involving contiguous
arrays

— GCG 11 Always returnPt r, RCP, Ar r ay Vi ew, andAr r ay RCP smart pointer objects by
value, never by reference

— GCG 12 Only return a raw C++ reference from a function for non-pesting associaitons and
use the reference and discard it in the same same statement

— GCG 13 Return onlyPt r andAr r ay Vi ewobjects by value to establish semi-persisting
associations; never use a raw C++ reference for a semi-jgéirgj association

— GCG 14 When raw C++ pointers must be exposed (i.e., due to intentaaiith non-compliant
code), minimize the amount of code exposed to the raw pointer

e Object Control

— GCG 15 Accept user options at runtime througheuchos: : Par anet er Li st object by
deriving from theTeuchos: : Par anet er Li st Accept or interface

— GCG 16 Fully validate all parameters and sublists in accepted
Teuchos: : Par anet er Li st objects usingval i dat ePamat er s(...) and other
means

e Object Introspection

— GCG 17 Always send output to some genesald: : ost r eamobject; Never send output
directly tost d: : cout orstd: : cerr;Never print output withprint (...) or
printf(...).

x Prefer to print output through &euchos: : FancyOSt r eamobject instead of through
a barest d: : ost r eamobject to more easily produce indented formatted output

x Derive fromTeuchos: : Descri babl e and implement the functions
description() anddescri be() to allow clients to print the current state of an
object

x Derive fromTeuchos: : Ver boseObj ect and printto*t hi s- >get OSt r ean() to
give information about what an object is doing

x As a last resort, always prefer printing to
*Teuchos: : Ver bosehj ect Base: : get Def aul t OSt r ean{) instead of
std::cout orstd::cerr.

42

e Miscellaneous coding guidelines

GCG 18 Prefer to explicitly specify template arguments in a tertgofanction call to avoid
protability problems and enable implicit covnersions giuharguments

GCG 19 Use the template functioheuchos: : as<T_t o>(Tf r om) for all conversion of
value data types that may result in loss of precision or inraorrect conversion

GCG 20 Use namespace enclosure for the definition of C++ class menbe

GCG 21 Use explicit namespace qualification for the definition éhahmember C++
functions

GCG 22 For general functions, prefer to list function argumentshie order of input,
input/output, output, and finally optional arguments witfallt values

GCG 23 For non-member object functions, list the object as the éirgtment passed in as a
const reference or non-const reference

GCG 24 Preferenuns tobool s as formal function arguments when conversion mistakes are
likely.

GCG 25 Avoid overloading virtual functions

GCG 26. Avoid overloading functions on different smart pointereyge.g.RCP, Pt r , etc.)

GCG 27 Include only standard C++ headersc X>, not standard C headersX. h>, and

avoid allusi ng nanespace st d directives

GCG 28 Break up templated code into four fil8enmeCl ass_decl . hpp,

SonmeCl ass_def . hpp, SonmeCl ass. hpp,andSomed ass. cpp to support both implicit
and explicit instantiation, minimize recompilation, angb@d problems in mutually dependent
(i.e. circular) declarations

FSCP(General principles for formatting of source code)

e FSCP 1 Formatting should accurately and consistently show the&kdgstructure of the code

e FSCP 2 Formatting should improve the readability of the code forstrfzeople

e FSCP 3 Formatted code should retain its formatting well when medifiespecially for those

modifications performed by automated tools

e FSCP 4 Formatting style should follow the most common idiom untegsof the above principles

are violated

FSC (Specific source code formatting principles)

FSC 1 The formatting style in any single file or group of closehated files should be the same
FSC 2 Try to keep all text within the first 80 character columns
FSC 3 Indent with spaces and not tabs (two spaces by default)

FSC 4 Use two vertical spaces to separate class declarationstiom definitions, namespace
enclosure bounds, and other such major entries in a file

43

FSC 5 Do not indent source code inside of namespace enclosusdsaithuse commented end
braces

FSC 6 C++ class declarations should generally be laid out withbl i ¢ members coming before
pr ot ect ed members coming befop i vat e members and indented as shown in Figure 1

FSC 7: List short function prototypes on one line and longer prgpais on multiple lines, indenting
arguments one unit

— List short function prototypes on one line if possible

— For longer prototypes, indent arguments on continuatioledi one unit

— Return types can be listed on same line as the function narmeesittie line is too long

FSC 8 Order the definitions of C++ entities the same as the ordehefdeclarations of those
entities

FSC 9 Use “modified K&R” or “ANSI” style for the placement of bracesé indentation of control
structures

DOXP (Goals for function and class level documentation)

DOXP 1: The level of documentation should vary depending on theipemme and/or the role of
the software entity or collection

DOXP 2: Important abstract interfaces must be fully specified imhelent of any single concrete
implementation (i.e. preconditions, postconditionsaiants, etc.)

DOXP 3: Behavior of "user level” interfaces must be completely sfied by the Doxygen
documentation and/or other higher-level documentatiom fpreconditions, postconditions,
invariants, etc.)

DOXP 4: Wrong documentation is (almost) worse than no documemtaticll.
DOXP 5: The same documentation should not be repeated in more treplace if possible

DOXP 6: The documentation should maintain itself as much as pesaitd be testable as much as
possible

DOX (General Doxygen documentation principles)

DOX 1: Write Doxygen documentation directly in header files witbutoented entities
DOX 2: Use a centralized set of definitions for common argumentsi@xes possible

DOX 3: Provide typical pre- and postconditions along with the doemtation for common
arguments whenever possible

DOX 4: Add a\bri ef description for every entity that should be seen by the.user

44

DOX 5: Add a\par amfield for all of the arguments or none of the the arguments uretion; do
not define partial\par amfield lists

DOX 6: Only add a\r et ur ns field if necessary and if so refer to the return object @$ ur nVal .

DOX 7: Prefer specifying postconditions for output argumentseirt\par amfield; otherwise
specify their postconditions in the 'postconditions’.list

DOX 8: Order the documentation fields in function documentatiohkas ef , \par am
Preconditions, Postcondition§r et ur ns, then detailed documentation; omitting those components
that do not apply

DOX 9: If possible, try to us&r el at es to associate nonmember functions with a single class
DOX 10: Provide detailed documentation for only the initial deeon of a virtual function
DOX 11: Aggregate the overrides of virtual functions into groups@ding their base class

DOX 12: Example source code used in Doxygen-generated and othmas fof documentation should
be extracted automatically from code that is compiled amstetd nightly

DOX 13: Sample output should be generated automatically from dechpind tested code

45

B Summary of Teuchos memory management classes and idioms

Basic Teuchos smart pointer types

Non-persisting (and semi-persisting) Persisting
Associations Associations
single objects Ptr<T> RCP<T>
contiguous arrays ArrayView<T> ArrayRCP<T>

Other Teuchos array container classes
| Array class | Specific use case \
Array<T> Contiguous dynamically sizable, expandable, and coriitacirrays
Tuple<T,N> | Contiguous statically sized (with si2& arrays

Equivalencies for const protection for raw pointers and Teuwhos smart pointers types

| Description | Raw pointer | Smart pointer |
Basic declaration (non-const obj)| typedef A* ptr _A RCP<A>
Basic declaration (const obj) typedef const A* ptr _const _A | RCP<const A>
non-const pointer, non-const objecptr _A RCP<A>
const pointer, non-const object | const ptr _A const RCP<A>
non-const pointer, const object | ptr _const _A RCP<const A>
const pointer, const object const ptr _const _A const RCP<const A>

Summary of operations supported by the basic Teuchos smartqginter types
Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Raw pointer-like functionality
Implicit conv derived to base
Implicit conv hon-const to const
Dereferenceperator*()
Member accessperator->()
operator{](i) X
operatorst+, -- , +=(i) , -=(i)
Other functionality
Reference counting machinery X
Iterators: begin(), end() X X
ArrayView subviews X X

XX | X | X
XX | XX

XX [X[X]|X

x

Basic implicit and explicit supported conversions for Teutios smart pointer types

| Operation | Ptr<T> | RCP<T>| ArrayView<T> | ArrayRCP<T> |
Implicit conv derived to base X X
Implicit conv non-const to const X X X X
const _cast X X X X
static _cast X X
dynamic _cast X X
reinterpret _cast X X

46

Class Data Members for Value-Type Objects

| Data member purpose | Data member declaration |
non-shared, single, const object const S s _;
non-shared, single, non-const object S s
non-shared array of non-const objects Array<S> as _;
shared array of non-const objects RCP<Array<S> > as _;

non-shared statically sized array of non-const objecigple<S,N> as _;

shared statically sized array of non-const objects | RCP<Tuple<S,N> > as _;
shared fixed-sized array of const objects ArrayRCP<const S> as _;
shared fixed-sized array of non-const objects ArrayRCP<S> as _;

Class Data Members for Reference-Type Objects

Data member purpose \ Data member declaration

non-shared or shared, single, const object | RCP<const A> a _;

non-shared or shared, single, non-const objeRCP<A> a;

non-shared array of const objects Array<RCP<const A> > aa _;
non-shared array of non-const objects Array<RCP<A> > aa _;

shared fixed-sized array of const objects ArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;
shared fixed-sized array of non-const objectsArrayRCP<RCP<const A> > aa _;

“...” (const ptr) ArrayRCP<const RCP<const A> > aa _;

47

Passing IN Non-Persisting Associations to Reference (or Wee) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object (require

djonst A &a

single, non-changeable object (option

algonst Ptr<const A> &a

single, changeable object (required)

const Ptr<A> &a or A &a

single, changeable object (optional)

const Ptr<A> &a

array of non-changeable objects

const ArrayView<const Ptr<const A> > &aa

array of changeable objects

const ArrayView<const Ptr<A> > &aa

Passing IN Persisting Associations to Reference (or Valu@bjects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const RCP<const A> &a

single, changeable object

const RCP<A> &a

array of non-changeable objedtsonst ArrayView<const RCP<const A> > &aa

array of changeable objects

const ArrayView<const RCP<A> > &aa

Passing OUT Persisting Associations for Reference (or Vad) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<RCP<const A> > &a

single, changeable object

const Pir<RCP<A> > &a

array of non-changeable objegtsonst ArrayView<RCP<const A> > &aa

array of changeable objects

const ArrayView<RCP<A> > &aa

Passing OUT Semi-Persisting Associations for Referencer(dalue) Objects as Func Args

| Argument Purpose

\ Formal Argument Declaration

single, non-changeable object

const Ptr<Ptr<const A> > &a

single, changeable object

const Ptr<Ptr<A> > &a

array of non-changeable objedtsonst ArrayView<Ptr<const A> > &aa

array of changeable objects

const ArrayView<Ptr<A> > &aa

48

Passing IN Non-Persisting Associations to Value Objects &unc Args

Argument Purpose \ Formal Argument Declaration \

single, non-changeable object (required s or const S s or const S &s

single, non-changeable object (optionalyonst Ptr<const S> &s

single, changeable object (required) | const Ptr<S> &s or S &s

single, changeable object (optional) | const Ptr<S> &s

array of non-changeable objects const ArrayView<const S> &as

array of changeable objects const ArrayView<S> &as

Passing IN Persisting Associations to Value Objects as Fuags
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objectsonst ArrayRCP<const S> &as
array of changeable objects | const ArrayRCP<S> &ss

Passing OUT Persisting Associations for Value Objects as lrg Args
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objedtsonst Ptr<ArrayRCP<const S> > &as
array of changeable objects | const Ptr<ArrayRCP<S> > &as

Passing OUT Semi-Persisting Associations for Value Objegtas Func Args
| Argument Purpose | Formal Argument Declaration |
array of non-changeable objedtsonst Ptr<ArrayView<const S> > &as
array of changeable objects | const Ptr<ArrayView<S> > &as

49

Returning Non-Persisting Associations to Value Objects
Purpose | Return Type Declaratiot

Single copied object (return by value) | S

Single non-changeable object (requiredjonst S&

Single non-changeable object (optionalPtr<const S>
Single changeable object (required) | S&

Single changeable object (optional) | Ptr<S>

Array of non-changeable objects ArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Persisting Associations to Value Objects
| Purpose | Return Type Declaratior)
Array of non-changeable objectsArrayRCP<const S>
Array of changeable objects ArrayRCP<S>

Returning Semi-Persisting Associations to Value Objects
| Purpose | Return Type Declaration
Array of non-changeable objectsArrayView<const S>
Array of changeable objects ArrayView<S>

Returning Non-Persisting Associations to Reference (or \fae) Objects
Purpose | Return Type Declaration |

Single cloned object RCP<A>

Single non-changeable object (requiredjonst A&

Single non-changeable object (optionalPtr<const A>

Single changeable object (required) | A&

Single changeable object (optional) | Ptr<A>

Array of non-changeable objects ArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

Returning Persisting Associations to Reference (or Value)bjects

| Purpose | Return Type Declaration |
Single non-changeable object | RCP<const A>
Single changeable object RCP<A>

Array of non-changeable objectsArrayView<const RCP<const A> >
Array of changeable objects ArrayView<const RCP<A> >

Returning Semi-Persisting Associations to Reference (oralue) Objects

| Purpose | Return Type Declaration |
Single non-changeable object | Ptr<const A>
Single changeable object Ptr<A>

Array of non-changeable objectsArrayView<const Ptr<const A> >
Array of changeable objects ArrayView<const Ptr<A> >

50

Conversions of data-types for single objects

.getRawPtr () AVOID THIS!

<Derived> to <Base> | v | :

! *
<T> to <const T> i RCP .operator* () I
-1 <T> F————=="===>—- T8 |
| O -7 |
I ptr() ott N7 !
| atl |

exs _~
re-- | .oP /// |
<Derived> to <Base> | y - :
<T> to <const T> :___ Ptr<T> ~ T* la—|
|

.getRawPtr () AVOID THIS!

Legend

<<implicit conversion>>

______________________ >

<<explicit conversion>>

Conversions of data-types for contiguous arrays

RCP<std::vector<T> >

\\
\arcp (..) r-----a

M v y <I> to
: <const TI>

RCP<Array<T> > Pt ArrayRCP<T> |-

NP T ~o
s ‘ -getRathr()

i)

~ e

\\betob

N2

ety T* lee .o ~Zy

— — JJCtR, <~

- ~lawee,, -
- ~

T== =

[Array<T> | T | ArrayView<T> [«

A <const T>

-

~- Tuple<T N>
svector<T>

Legend

<<implicit view conversion>>

<<implicit copy conversion>>

<<explicit copy conversion>>

51

Most Common Basic Conversions for Single Object Types

| Type To | Type From | Properties | C++ code

RCP<A> A* Ex, Ow rep(a _p) 1]

RCP<A> A* Ex, NOw rcp(a _p,false) 2

RCP<A> A& Ex, NOw rcpFromRef(a)

RCP<A> A& Ex, NOw rcpFromUndefRef(a)

RCP<A> Ptr<A> Ex, NOw, DR | rcpFromPtr(a)

RCP<A> boost::shared _ptr<A> | Ex, Ow, DR | rcp(a _sp)

RCP<const A> RCP<A> Im, Ow, DR | RCP<const A>(a _rcp)

RCP<Base> RCP<Derived> Im, Ow, DR | RCP<Base>(derived _rcp)

RCP<const Base> RCP<Derived> Im, Ow, DR | RCP<const Base>(derived _rcp)

boost::shared _ptr<A> | RCP<A> Ex, Ow, DR | shared _pointer(a _rcp)

A* RCP<A> Ex, NOw a_rcp.getRawPtr() 3

A& RCP<A> Ex, NOw *a_rcp 4

Ptr<A> A* Ex, NOw ptr(@ -p) 2

Ptr<A> A& Ex, NOw outArg(a) B

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp.ptr()

Ptr<A> RCP<A> Ex, NOw, DR | a_rcp()

Ptr<A> RCP<A> EXx, NOw, DR | ptrFromRCP(a _rcp)

Ptr<const A> Ptr<A> Im, NOw, DR | Ptr<const A>(a _ptr)

Ptr<Base> Ptr<Derived> Im, NOw, DR | Ptr<Base>(derived _ptr)

Ptr<const Base> Ptr<Derived> Im, NOw, DR | Ptr<const Base>(derived _ptr)

A* Ptr<A> Ex, NOw a_ptr.getRawPtr() 3

A& Ptr<A> Ex, NOw *a_ptr) 4

A* A& Ex, NOw gal3

A& A* Ex, NOw *a _p‘3
Types/identifiersA* a_p; A& @, Ptr<A> a _ptr ; RCP<A> arcp ; boost::shared _ptr<A> a _sp;

Properties: Im = Implicit conversion, Ex = Explicit convars, Ow = Owning, NOw = Non-Owning, DR = Dangling
Reference debug-mode runtime detection (NOTE: All corieessare shallow conversions, i.e. copies pointers not
objects.)

1. Constructing an ownin@®CPfrom a raw C++ pointer is strictly necessary but must be doith great care
according to the commandments in Appen@tx

2. Constructing a non-owningCPor Ptr directly from a raw C++ pointer should never be needed iryfatim-
pliant code. However, when inter-operating with non-coamt code (or code in an intermediate state of
refactoring) this type of conversion will be needed.

3. Exposing a raw C++ pointer and raw pointer manipulation sthoever be necessary in compliant code but
may be necessary when inter-operating with external caske $&ctior??).

4. Exposing a raw C++ reference will be common in compliant codieshould only be used for non-persisting
associations.

5. See other helper constructors for passitig described in Sectiofl?.

52

Most Common Basic Conversions for Contiguous Array Types

| Type To | Type From | Properties | C++ code (or impl function)
ArrayRCP<S> St Sh, Ex, Ow arcp(s -p,0,n) 1
ArrayRCP<S> St Sh, Ex, NOw arcp(s -p,0,nfalse) 2
ArrayRCP<S> Array<S> Sh, Ex, NOw, DR| arcpFromArray(s _a)
ArrayRCP<S> ArrayView<S> Sh, Ex, NOw, DR| arcpFromArrayView(s _av)
ArrayRCP<S> ArrayView<S> Dp, Ex, Ow arcpClone(s _av)
ArrayRCP<S> RCP<Array<S> > Sh, Ex, Ow, DR | arcp(s _a_rcp)
ArrayRCP<const S> RCP<const Array<S> > Sh, Ex, Ow, DR | arcp(cs _a_rcp)
ArrayRCP<const S> ArrayRCP<S> Sh, Im, Ow, DR | ArrayRCP::operator()()
S* ArrayRCP<S> Sh, Ex, NOw s_arcp.getRawPtr() 3
S& ArrayRCP<S> Sh, Ex, NOw s_arcp[i] 4
ArrayView<S> St Sh, Ex, NOw arrayView(s _p,n) 1
ArrayView<S> Array<S> Sh, Im, NOw, DR| Array::operator ArrayView()
ArrayView<S> Tuple<S> Sh, Im, NOw, DR| Tuple::operator ArrayView()
ArrayView<S> std::vector<S> Sh, Im, NOw ArrayView<S>(s _v)
ArrayView<S> ArrayRCP<S> Sh, Ex, NOw, DR| ArrayRCP::operator()()

ArrayView<const S>

const Array<S>

Sh, Im, NOw, DR

Array;:operator ArrayView()

ArrayView<const S>

const Tuple<S>

Sh, Im, NOw, DR

Tuple::operator ArrayView()

ArrayView<const S> const std::vector<S> Sh, Im, NOw ArrayView(cs _v)
ArrayView<const S> ArrayRCP<const S> Sh, Ex, NOw, DR| ArrayRCP::operator ArrayView()
S* ArrayView<S> Ex, NOw s_av.getRawPtr() 3
S& ArrayView<S> Ex, NOw s_av[i] 4

Array<S> St Dp, Ex Array<S>(s _p,s _p+n)
Array<S> std::vector<S> Dp, Im Array<S>(s _v)
Array<S> ArrayView<S> Dp, Im Array<S>(s _av)
Array<S> Tuple<S,N> Dp, Im Array<S>(s _t)
Array<S> ArrayRCP<S> Dp, Ex Array<S>(s _arcp());
std::vector<S> Array<S> Dp, Ex s_a.toVector();

St Array<S> Ex, NOw s_a.getRawPtr() 3
S& Array<S> Ex, NOw s_ali] 4

Types/identifiersS* s _p;
std:vector<S> s _v;

ArrayView<S> s _av; ArrayRCP<S> s _arcp ; Array<S> s _a;
RCP<Array<S> > s _a_rcp; RCP<const Array<S> > ¢s _a_rcp ;

Tuple<SN> s _t;

Properties: Sh = Shallow copy, Dp = Deep copy (dangling esfees not an issue), Im = Implicit conversion, Ex =
Explicit conversion, Ow = Owning (dangling references noissue), NOw = Non-Owning, DR = Dangling Reference
debug-mode runtime detection for non-owning

1. It should never be necessary to convert from a raw pointen toveningArrayRCP object directly. Instead, use
the non-member constructarcp<S>(n)

2. Constructing a non-owningrrayRCP or ArrayView directly from a raw C++ pointer should never be needed
in fully compliant code. However, when inter-operatingtwiton-compliant code (or code in an intermediate
state of refactoring) this type of conversion will be needed

3. Exposing a raw C++ pointer should never be necessary in dantgiode but may be necessary when inter-
operating with external code (see Sectki).

4. Exposing a raw C++ reference will be common in compliant cbdeshould only be used for non-persisting
associations.

53

C Summary of “C++ Coding Standards” (CPPCS) with amendments

Below, the 101 items in “C++ Coding Standards” by Sutter atekAndrescu [10] are listed along with
items that are amended or invalidated in the Thyra codinddimes. General amendments that apply to all
items are:

e Replacerl:shared _ptr with Teuchos::RCP
e Replacestd::vector with Teuchos::Array

e Replaceassert(someTest) with TEUCHOSASSERT(someTest)

Organizational and Policy Issues:

Item O : Don'’t sweat the small stuff. (Or: Know what not to standaed)
[Amended, see Section|6 and Appendix E]

Iltem 1 : Compile cleanly at high warning levels
Item 2 : Use an automated build system.

Iltem 3 : Use a version control system.

Item 4 : Invest in code reviews

Design Style:

ltem 5 : Give one entity one cohesive responsibility.

Item 6 : Correctness, simplicity, and clarity come first.

Item 7 : Know when and how to code for scalability.

Item 8 : Don't optimize prematurely.

Iltem 9 : Don’t pessimize prematurely.

Item 10 : Minimize global and shared data.

Item 11 : Hide information.

Item 12 : Know when and how to code for concurrency.

Item 13 : Ensure resources are owned by objects. Use explicit RAllsamart pointers.

Coding Style :

Item 14 : Prefer compile- and link-time errors to run-time errors.
Item 15 : Use const proactively.

Item 16 : Avoid macros.

Item 17 : Avoid magic numbers.

Item 18 : Declare variables as locally as possible.

Item 19 : Always initialize variables.

Item 20 : Avoid long functions. Avoid deep nesting.

54

Item 21 : Avoid initialization dependencies across compilatiofitsin

Item 22 : Minimize definitional dependencies. Avoid cyclic depencies.

Item 23 : Make header files self-sufficient.

Item 24 : Always write internal #include guards. Never write exi@r#include guards

Functions and Operators :

Item 25 : Take parameters appropriately by value, (smart) poiotereference.
[Amendedby Section 5.2]

Item 26 : Preserve natural semantics for overloaded operators.

Item 27 : Prefer the canonical forms of arithmetic and assignmeastatprs.
Item 28 : Prefer the canonical form of ++ and —. Prefer calling thdigpr®rms.
Item 29 : Consider overloading to avoid implicit type conversions.

Item 30 : Avoid overloading '&&’, ’

', or’) (comma).
Item 31 : Don't write code that depends on the order of evaluatioruatfion arguments.

Class Design and Inheritance:

Item 32 : Be clear what kind of class you're writing.

Item 33 : Prefer minimal classes to monolithic classes.

Item 34 : Prefer composition to inheritance.

Item 35 : Avoid inheriting from classes that were not designed to &setclasses.

Item 36 : Prefer providing abstract interfaces.

Item 37 : Public inheritance is substitutability. Inherit, not ®use, but to be reused.
Item 38 : Practice safe overriding.

Item 39 : Consider making virtual functions nonpublic, and publiaétions nonvirtual.
Item 40 : Avoid providing implicit conversions.

Item 41 : Make data members private, except in behaviorless agg®@a-style structs).
Item 42 : Don't give away your internals.

Item 43 : Pimpl judiciously.

Item 44 : Prefer writing nonmember nonfriend functions.

Item 45 : Always provide new and delete together.

Item 46 : If you provide any class-specific new, provide all of thensi@rd forms (plain, in-place,
and nothrow).

Construction, Destruction, and Copying :

Item 47 : Define and initialize member variables in the same order.

Item 48 : Prefer initialization to assignment in constructors.

Item 49 : Avoid calling virtual functions in constructors and destiors.

Item 50 : Make base class destructors public and virtual, or preteahd nonvirtual.

55

Iltem 51 : Destructors, deallocation, and swap never fail.

Item 52 : Copy and destroy consistently.

Item 53 : Explicitly enable or disable copying.

Item 54 : Avoid slicing. Consider Clone instead of copying in basessks.

Item 55 : Prefer the canonical form of assignment.

Item 56 : Whenever it makes sense, provide a no-fail swap (and peavicbrrectly).

Namespaces and Modules

Item 57 : Keep a type and its nonmember function interface in the ssameespace.

Item 58 : Keep types and functions in separate namespaces unlgssréhgpecifically intended to
work together.

Item 59 : Don’t write namespace usings in a header file or before aclutie.
[Amended, see Appendix D]

Item 60 : Avoid allocating and deallocating memory in different nubsk.
[Invalidated, see Appendix D]

Item 61 : Don’t define entities with linkage in a header file.

Iltem 62 : Don't allow exceptions to propagate across module boueslar
[Invalidated, see Appendix D]

Item 63 : Use sufficiently portable types in a module’s interface.
[Invalidated, see Appendix D]

Templates and Genericity :

Item 64 : Blend static and dynamic polymorphism judiciously.
Item 65 : Customize intentionally and explicitly.

Iltem 66 : Don’t specialize function templates.

Iltem 67 : Don’t write unintentionally nongeneric code.

Error Handling and Exceptions :

Item 68 : Assert liberally to document internal assumptions andiiilants
Item 69 : Establish a rational error handling policy, and followtitictly.
Item 70 : Distinguish between errors and non-errors.

Iltem 71 : Design and write error-safe code.

Item 72 : Prefer to use exceptions to report errors.

Iltem 73 : Throw by value, catch by reference.

Iltem 74 : Report, handle, and translate errors appropriately.

Item 75 : Avoid exception specifications.

STL: Containers :

Item 76 : Use vector by default. Otherwise, choose an appropriattageer.

56

Item 77
Item 78
Item 79
Item 80
Item 81
Item 82

: Use vector and string instead of arrays.

: Use vector (andtring::.c _str) to exchange data with non-C++ APls.

. Store only values and smart pointers in containers.

. Preferpush _back to other ways of expanding a sequence.

. Prefer range operations to single-element operations.

: Use the accepted idioms to really shrink capacity andyeatise elements.

STL: Algorithms :

Item 83

: Use a checked STL implementation.

[Amended, With GCC, configure Trilinos witfrilinos _ENABLECHECKELDSTL=0ON

Item 84
Item 85
Item 86
Item 87
Item 88
Item 89

Type Safety :

Item 90
ltem 91
Item 92
Item 93
Item 94
Item 95
Item 96
Item 97
Item 98
Item 99

. Prefer algorithm calls to handwritten loops.

: Use the right STL search algorithm.

: Use the right STL sort algorithm.

: Make predicates pure functions.

. Prefer function objects over functions as algorithm anchparer arguments.
: Write function objects correctly.

. Avoid type switching; prefer polymorphism.

: Rely on types, not on representations.

. Avoid usingreinterpret _cast .

. Avoid usingstatic _cast on pointers.

. Avoid casting away const.

: Don't use C-style casts.

: Don't memcpy or memcmp non-PODs.

: Don’t use unions to reinterpret representation.

: Don'’t use varargs (ellipsis).

: Don't use invalid objects. Don't use unsafe functions.

Item 100 : Don't treat arrays polymorphically.

57

D Miscellaneous amendments to “C++ Coding Standards”

In this appendix, some of the amendments mentioned in App&itb some of the items in [10] are
discussed in more detail.

D.1 Amendments to items related to compiler/linker incompaibilities

There are three items in [10] that relate to portability peols associated with mixing and matching code
in different binary libraries compiled with different C+-ompilers or with different compiler options. In
this context, the authors use the term “module” to mean deslitgary or a set of libraries containing
simiarly compiled binary object code.

In general, one can not assume that object code compileddgitwore different C++ compilers will

work together since the name-mangling needed for typelsdfage is not even specified by the ISO C++
standard. A more typical problem is when the same compilesésl, but different compiler and/or linker
options are used. For example, some compilers allow yourtosupport for exception handling on and off
and if an exception is thrown by one module it will not be haadtorrectly by another module that has
exception handling support turned off. A similar problenm ¢teppen when mixing static and shared
libraries, in Linux for example, where RTTI is handled diffatly and can result in dynamic casting
failures in cases where it would otherwise succeed.

In our model of software deployment, we distribute sourcgecand a build process that users can
manipulate in order to set the exact compiler and linkerasgtito match what is used by other libraries and
the application code that uses the libraries. Because wala@eelass libraries, it is simply not realistic to
isolate this type of code into libraries with small “Facadgie interfaces that are advocated in/[10].

The specific items that we consider inappropriate are:

e Item 60: Avoid allocating and deallocating memory in diéiet modules
e Item 62: Don'’t allow exceptions to propagate across modwleruaries

e Item 63: Use sufficiently portable types in a module’s irzesf

All three of these items are related to the problem of mixindecreated by different compiler and/or
linker options. However, they may also be related to mixedjleage programming. For example, in order
to ensure that your module is the most reusable, you mightei@ C-compatible interface that allows
clients coding in C (and even Fortran 77 in some cases) t@ndlbe called by your module. If mixed
language programming is the issue, then a spegtain "C" interface should be created for the module
which will automatically satisfy Items 60, 62, and 63. Ndtattreference counting machinery in tReP
andArrayRCP classes actually solves the problem of calliegy anddelete in different modules that is
described in Item 60 because the deallocator object thistdeddte is create and assigned in the same
module wheraew is called which guarantees that they are consistent.

58

D.2 Amendments for 'using’ declarations and directives

In [10, Item 59], the authors say to never put 'using’ dediars into header files or befo#include s and
that 'using namespace SomeNamespace’ directives arecfigidafe for code in source files after all
#include s. However, we will argue that:

e employingusing declarations to inject names of C++ classes or enums frormamespace into
another is perfectly safe (this is more lax than what is setggein [10, Item 59])

e employing ausing namespace SomeNameSpace directive in any context is harmful and should be
avoided (this is more restrictive than what is suggested @, [tem 59]).

However, we agree that employinging declarations for nonmember functions is dangerous andbs to
avoided because of problems related to overloading and at wider overloads are declared and used (as
described in [10, Item 59]) .

Are all using declarations employed in header files danggtdn [10, Item 59], the authors clearly show
that employing 'using’ declarations for nonmember functies dangerous because of overloading. But
what about employing 'using’ declarations for C++ classes a@ther types?

To investigate the issues involved, consider the followmgC++ program (in the file
NamespaceClassUsinglssues.cpp):

/1
/! Header-like declarations
/1

#include <iostrean>
#include <cstdlib>

namespace Namespacef

template<class T
class A{
public:
explicit A(const T& a) : a(a) {}
void print(std::ostream &os) consf 0s << "\na=<<a.<<"\n"; }
private :
T a_;
}

} /1 namespace NamespaceA

/l/ Add a using declaration to inject 'A’ into another namespa
namespace NamespaceB using NamespaceA::A;}

I/l Now use the A class without namespace qualification in MapaceB
namespace NamespaceB

A<double> foo(std::ostream &os, const<Ant> &aa);

59

+ // namespace NamespaceB

/!l Create another A class in the global namespace. With came, should
/I not have any problems with this and our code should not bdeated by
/Il the presence of this class.
template<class T
class A{
public:

explicit A(const T& a) : a(a)

{ std::cerr<< "\nOh no, called ::A::A(...)A\n”"; std::exit(1l); }

void print(std::ostream &os){ 0s << "\na='<<a.<<"\n"; }
private :
T a_;
}

/I See what happens when you define another class A in Nante&awvhich
/!l conflicts with the using declaration! This should not bdleawed and
/!l should be caught by the compiler!

#ifdef SHOWDUPLICATE.CLASSA
namespace NamespaceB

template<class T
class A{
public:
explicit A(const T& a) : a(a)
{ std::cerr<< "\nOh no, called ::A::A(...)\n”"; exit(l); }
void print(std::ostream &os){ 0s << "\na=<<a.<<"\n”; }
private :
T a_;

b
+ I/l namespace NamespaceB

#endif // SHOWDUPLICATE.CLASSA

/1
/' Implementations
/1

/I Define function in NamespaceB without namespace quaddiion for class A
NamespaceB ::Adouble>
NamespaceB :: foo(std::ostream &os, constiAt> &aa)
{
A<double> ab(2.0);
aa.print(std::cout);
ab.print(std::cout);
return ab;

/1 NOTE: Above, we need explicit namespace qualificationrfohe return

Il type ’'NamespaceB ::Adouble>" since we use namespace qualification to
/I define nonmember functions (see Thyra coding guidelines Without this

60

/!l namespace qualification, the global class ’'::A’ would lessumed and
// you would get a compilation error. However, within the faron , which
/Il is in the scope of NamespaceB, we don’t need namespace ifulcadtions!

/1

/!l User’s code. This code does not typically live in a namespa(or is
/!l in another unrelated namespace). Here, some explicit espace

/I qualification and using declarations will be required tavoid

/I ambiguities.

/1

int main()

{

#if defined (SHOWMISSING.USING.DECL)
/!l Here, no using declaration is provided. This will resuln ithe
/!l global class '::A’ being used below which will result in aompiler
/!l error when the NamespaceB::foo(...) function is calledThis is a
/I feature!

#elif defined (SHOWERRONEOUSUSING.DIRECTIVE)
I/l Here we try to just inject all of the names from NamespaceAta the
/!l local scope. However, this will result in the names ’'NamaseA::A’
[/l and ’'::A’ being equally visible which will result in a comper error
/1l when the first unqualified 'A’ object is created below!
using namespace NamespaceA;

#else
I/l Inject the class name 'A’ into the local scope and will ovéde any
Il (sloppy) names polluting the global namespace. This wdause the
/1 global ’'::A’ class to be hidden (which is good!).
using NamespaceA::A;

#endif

A<int> aa(5);
A<double> ab = NamespaceB::foo(std::cout,aa);
ab.print(std::cout);

return O;

The above program defines a templated chassnamespac8lamespaceA and then does @sing
NamespaceA::A to inject this class name intéamespaceB.

When the program is compiled and run with g++ (version 4,34§ gets:

$ g++ -ansi -pedantic -Wall -0 NamespaceClassUsinglssues. exe
NamespaceClassUsinglssues.cpp

$./NamespaceClassUsinglssues.exe

a=5

61

a=2

a=2
This program has a few different ifdefs to show differentagmf errors that a compiler will detect.

1. What happens if one tries to define another clasis namespac®lanespaceB?

In the case of nonmember functions, overloads of a functidribé strange and non-intuitive
behavior when one employs 'using’ declarations. Howevéathappens with classes?

In the above program, when one defines the m&ttOWDUPLICATE. CLASS A when compiling, one
will get the following compile-time error:

$ g++ -ansi -pedantic -Wall -DSHOW_DUPLICATE_CLASS A \

-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp
NamespaceClassUsinglssues.cpp:53: error; redefinition of

'class NamespaceA::A<T>'
NamespaceClassUsinglssues.cpp:11: error: previous defi nition of

‘class NamespaceA::A<T>'

Above, the error message generated by g++ 4.3.4 is very gub@iapoints the problem exactly.
This is in stark contrast to what happens when you have ageid member functions which [10,
Item 59] explains.

Take-home MessageEmployingusing SomeNamespace::SomeClass declarations to inject
names from one namespace into another seems to be safe anubtiseffer from the gotchas
associated witlising declarations for (overloaded) nonmember functions.

2. What happens when the user’s code does not have an appwpisatg declaration?

While theusing NamespaceA::A declaration irNamespaceB allows the code ilNamespaceB to

avoid having to explicitly qualiffNamespaceA::A all the time, this does not automatically mean that
user code that does not live NamespaceB will not have to do something to get at the namdhe

user can either do explicit qualificaticdtamespace::A or can put ausing NamespaceA::A

declaration at the top of their namespace or in each funttianthey have (as is done in thnain()
function above).

In the above program, if one defines the ma@HOWMISSING_USING_DECL, theusing

Namespace::A declaration will be missing imain() and this will result in the compiler finding the
global::A class which will cause a compiler error whidamespaceB::foo(...) gets called. Here
is the error message that one gets when compiling with thisondefined:

$ g++ -ansi -pedantic -Wall -DSHOW_MISSING_USING_DECL \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:121: error: invalid init ialization of
reference of type 'const NamespaceA:A<int>& from expres sion of type ’
A<int>’

NamespaceClassUsinglssues.cpp:80: error; in passing arg ument 2 of *
NamespaceA::A<double> NamespaceB::foo(std::ostreamg&, const

NamespaceA::A<int>&)'

62

The above error message generated by g++ 4.3.4 here is maidedls the compiler catches the
mistake and states the types involved.

Take-home MessageAlways employusing SomeNamespace::SomeClass to inject type names
from other namespaces that you want to use in your namespgeetect your code from others who
pollute the global namespace.

. What happens when the user code employsiang nanespace NanmespaceAdirective when
there are conflicting names?

Since there is a global clasa , the user can not simply employaing namespace NamespaceA
directive or the compiler will complain that it does not knewhich class to use.

In the above program, when one defines the m&OWERRONEOUSSING_DIRECTIVE when
compiling one gets the following very good compile error sege:

$ g++ -ansi -pedantic -Wall -DSHOW_ERRONEOUS_USING _DIREC TIVE \
-0 NamespaceClassUsinglssues.exe NamespaceClassUsing! ssues.cpp

NamespaceClassUsinglssues.cpp: In function ‘int main()’

NamespaceClassUsinglssues.cpp:120: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A' here

NamespaceClassUsinglssues.cpp:120: error: parse error b efore *>" token

NamespaceClassUsinglssues.cpp:121: error: use of ‘A’ is a mbiguous

NamespaceClassUsinglssues.cpp:45: error: first declare das
template<class T> class A’ here

NamespaceClassUsinglssues.cpp:10: error: also declared as '
template<class T> class NamespaceA::A' here

NamespaceClassUsinglssues.cpp:121: error: parse error b efore *>" token

NamespaceClassUsinglssues.cpp:122: error: ‘ab’ undecla red (first use
this function)

NamespaceClassUsinglssues.cpp:122: error; (Each undecl ared identifier

is reported only once for each function it appears in.)

Note that this type of example goes against the advise inféd, 59] where the authors state that it
is safe to employsing namespace SomeNamespace directives in*.cpp source files. This example
shows that this does not protect the code from others thaitpahe global namespace. Note that
code that is written this way might compile one day and not as it is fragile and can be broken
by other people that pollute the global nhamespace.

Take-home MessageNever employsing namespace AnyNamespace in any context as you
cannot guarantee the integrity of your code since peoplgdribf your namespace can cause your
code to not compile.

63

E Arguments for adopting a consistent code formatting style

While there are reasonable ways to handle different codedtimg styles within a project (e.g. custom file
styles in emacs), there are arguments for preferring a mamsistent code formatting style that is used
throughout a project by all developers in the project. lyjsc¢ally more difficult to modify code than to
read code that uses an unfamiliar coding style and therefmsistent coding styles is more important in
cases where multiple developers modify the same code base.

One of the more lenient opinions on coding style in the lit&comes from [10, Item 0] where the
authors state:

“Do use consistent formatting within each source file or evach project, because it's jarring
to jump around among several styles in the same piece of &dalon't try to enforce
consistent formatting across multiple projects or acroesrapan@".

Much stronger arguments for working toward a consistenedodmatting style within a project are made
by other individuals and organizations who represent a wadge of views of software development.
These organizations and persons vary from those assoe@idtedpen-source organizations (e.g. GNU) to
newer Agile methodologists (e.g. Extreme Programmingatgd software companies (e.g. Microsoft). As
different as these various people and organizations vieméture of software (e.g. GNU vs. Microsoft)
and how it should be developed (e.g. GNU vs. Extreme Progiagjnthey all agree that some
consistency in coding style is a good idea.

A few points are worth making before looking at opinions omfatting style expressed by these different
individuals and organizations. In each of the referenceslcthe individual or organization gives a
justification for the opinions expresses and it is up to ttaeles to weigh these arguments on their own.
Also, just because an opinion is expressed by an “expert§ doéin and of itself automatically give that
opinion a lot of credence. However, when a wide number oedzffit and diverse “experts” espouse the
same opinion, then such a point of view should be conside@® seriously.

E.1 Statements on coding style from varied persons and/or ganizations

Here we overview some options on consistent code formastiylg from a variety of sources.

E.1.1 Open source software (the GNU project)

On one end of the spectrum is the open source software coryntbhat one can think of as the freest form
of software. A GNU package is usually not even developed yhasive set of developers but yet the
official GNU Coding Standafdstates:

"The implicit assumption in this latter qualification is thievelopers don't interact heavily with multiple projectsdamulti-
ple projects don't interact much with each other and theestbere is typically little advantage to having a compargiencode
formatting standard. However, if the same developers woglether on multiple projects and go back and forth betweejepts
frequently, it is unclear what the opinion of the authors lddue in this case.

Shttp://www.gnu.org/prep/standards/standards.html

64

“The rest of this section gives our recommendations foroéspects of C formatting style ...
We don't think of these recommendations as requiremeniBit.whatever style you use,
please use it consistently, since a mixture of styles witinie program tends to look ugly. If
you are contributing changes to an existing program, pléak®v the style of that program”.

While the above passage does not mandate a consistent abglimgvithin a GNU package (because it
can', its free software), it does recommend a coding Etah{i it asks that each project please use a
consistent coding style throughout a GNU project.

E.1.2 Agile Methods (Extreme Programming)

While the Extreme Programming and GNU movements are milag apterms of how it expects coders to
work together to create code, they both agree that using sistent coding style within a project is
important.

In his popular 1999 book “Extreme Programming Explained;, kent Beck explicitly listed “Coding
Standards” as one of XP’s twelve recommended practicesidrbbok, Beck states

“You couldn’t possibility ask the team to code to a commomdgad. Programmers are deeply
individualistic, and would quit rather than put their cudyaces somewhere else. Unless:

e The whole of XP makes them more likely to be members of a wipitéam.

Then perhaps they could be willing to bend their style aelitBesides, without coding
standards the additional friction slows pair programming eefactoring significantly”.

In this first book, Beck also comments on coding standardsdrtontext of “collective ownership” of code
by stating:

“You couldn't possibly have everybody potentially chargienything anywhere. Folks would
be breaking stuff left and right, and the cost of integratiosuld go up dramatically. Unless:

e You integrate after a short enough time, so that chancesrdficts go down.

e You adhere to coding standards, so you don't get into thedéig&urly Brace Wars.

Then perhaps you could have anyone change code anywhersgdtem when they see the
chance to improve it”.

As a result, many XP projects have insisted on requiringyerember of the team to code in the same
way. So much to the point that one should not be able to tell wiwde a piece of code just in how it is
formatted. As of this writing, almost every source of inf@tion on XP on the Internet takes a very strong
opinion on the adoption of a consistent coding style by an g The specific details of the coding

9The official GNU formatting style is one of the built-in stglen Emacs called the “gnu” style

65

style are not important, what is important is that everyoneh@ team helps to formulate and agrees to use
the same coding style.

In his updated 2005 book “Extreme Programming Explained¢:o8eé Edition” [3], Kent Beck has
restructured XP and now the “Coding Standards” practiceiknger specifically listed as a practice.
Does this mean that consistent code formatting is not lomgportant in XP? The simple answer is no. In
her article “The New XP* which outlines the second edition of Beck’s book and conpdr® the first
edition, Michele Marchesi states:

“You must note that in the new XP we cannot find original praesiofcoding standardsthat
is considered obvious, ... "

And to put to rest any doubt how Beck himself feels about iest coding styles he states in the second
edition:

“For example, people get passionate about coding styleléttinere are undoubtedly better
styles and worse styles, the most important style issueaitdiie team chooses to work towards
a common style. Idiosyncratic coding styles and the valaesaled by them, individual
freedom at all costs, don't help the team succeed”.

Therefore, it is clear that the flagship of the Agile prograimgnrmovement, XP, clearly advocates that a
team of developers should work towards a consistent coaedfting style.

E.1.3 Code Complete

In [7], Steve McConnell makes a strong argument that grobpsld adopt a consistent coding standard,
including reasonable guidelines for the formatting of seutode.

There are several places in his book where McConnell ssdhgadmportance of using a consistent
formatting style in a group project:

e “The bottom line is that the details of a specific method aicturing a program are much less
important than the fact that the program is structured bestly” [7, Section 31.1]. This quote is
almost an exact paraphrase of the statements made in the Gdligcstandard document and by
Beck in the Extreme Programming books mentioned above.

e “The importance to comprehension and memory of structunimg's environment in a familiarly way
has lead some researchers to hypothesize that layout naghtdn expert’s ability to read a program
if the layout is different from the scheme the expert use£(981, Soloway and Ehrlich 1984)”
[7, Section 31.1]. This implies that working with an unfaianilstyle might handicap expert coders
more than beginner and intermediate coders.

e “Structuring code is important for its own sake. The spedafavention you follow is less important
than the fact that you follow the same convention consistefit, Chapter 31].

10 http://www.agilexp.org/downloads/TheNewXP. pdf

66

“Many aspects of layout are religious issues. Try to sepavhjective preferences from subjective
one. Use explicit criteria to help ground your discussiobsua style preferences.” [7, Chapter 31].

“Use conventions to spare you brain the challenge of rementdparbitrary differences between
different sections of code .I [7, Section 34.1].

“The point of having coding conventions is to mainly reduoenplexity. When you standardized
decisions about formatting, loops, variable names, modeibtations, and so on, you release mental
resources that you need to focus on more challenging asplttts programming problem. One
reason coding conventions are so controversial is thateB@mong the options have some limited
aesthetic base but are essentially arbitrary. People hawmost heated arguments over their smallest
differences. Conventions are most useful when they sparéhgtrouble of making and defending
arbitrary decisions. They are less valuable when they impestrictions in more meaningful areas.”
[7, Section 34.1].

“The motivation behind many programming practices is tau@da program’s complexity, and
reducing complexity is arguably the most important key tmben effective programmer.” [7,
Chapter 34].

“When abused, a programming convention can be a cure thatsenthan the disease. Used
thoughtfully, a convention adds valuable structure to teetbpment environment and helps with
managing complexity and communication.” [7, Chapter 34].

“In general, mandating a strict set of technical standamis the management position isn't a good
idea.” [7, Section 28.1].

“If someone on a project is going to define standards, haveented architect define the standards
rather than a manager ... If the architect is regarded asrdjeqgts’ thought leader, the project team
will generally follow standards set by that person.” [7, &t 28.1].

“If your group resists adopting strict standards, consalé&w alternatives: flexible guidelines, a
collection of suggestions rather than guidelines, or asexamples that embody the best practices.
[7, Section 28.1].

“Even if your shop hasn’t created explicit coding standardgiews provide a subtle way of moving
toward a group coding standard—decisions are made by thip gharing reviews, and over time
group derives its own standards.” [7, Section 28.1].

One could summarize that McConnell advocates that havirapsistent coding style as being an
advantage in many ways but cautions that the standardsdsheueveloped by the programmers in the
group and not dictated by nontechnical managers.

E.1.4 Lockheed Martin Joint Strike Fighter C++ Coding Standard

TheJoint Strike Fighter Air Vehicle C++ Coding Standardscument [5] from Lockheed Martin defines
C++ coding standards for high consequence applicatioastkie multi-billion dollar JSF program). While
this standard is not the most strict standard out there g@saoandate many different aspects of code
formatting such as the placement and indentation of brgge¢AVv Rules 59, 60, and 61) and the
formatting of function prototypes (AV Rule 58). The pointligt standards for high consequence (i.e. low

67

tolerances for defects) may legitimately or otherwise meggreater uniformity in source code. While
some of the formatting mandates of this document are diffetean those suggested in [7, Chapter 31],
this JSF standard in general is advocated by such indiscagBjarne Stroustrupiand is therefore not
without some merit.

E.2 The keyboard analogy for coding styles

The issues involved in going back and forth between diffevefiamiliar code formatting styles are similar
to the issues in going back and forth between different caergeeyboard layouts. While some people
may naturally prefer one type of keyboard to another (e.gh s preferring an ergonomic keyboard to
avoid problems with repetitive stress injuries or peopléhvarger hands having trouble with smaller
keyboar), a person is most proficient when using a single type of kagd@or a long period of time.
While a person can generally get used to using a few diffexgr@s of keyboards that are used frequently
(such as the ergonomic keyboard for a desktop computer amkes laptop keyboard), having to work
occasionally on a very different keyboard really slows d@wgood typer and increases typing mistakes.
For example, a person who uses PC-style keyboards with thed&ey on the lower left, are completely
handicapped when using a Sun keyboard where the Controkkekiere the Caps Lock key is on a PC
keyboard.

When given enough time, almost anyone can become accustoraest reasonable keyboard layout and
can be productive (as long a unusual physical constraieta@trinvolved). As long as the person uses the
keyboard consistently, the productivity will be about tlaene as with a more favored keyboard layout.
Therefore, except for certain physical constraints, agrecsan learn how to use most keyboard layouts
given enough time, but switching back and forth occasigrnagitween different keyboards really damages
productivity and increases mistakes.

The same is true for having to read and modify code that usteseathit code formatting styles. Just about
anyone can become accustomed to just about any reasonaltg style if given enough time working

with a particular style. However, switching back and fonteguently between different coding styles really
does damages productivity and increases coding mistakesfiee people, just as switching back and forth
between different keyboards can really damage produgtand increase typing mistakes.

E.3 Conclusions

The antagonism between pushing a common formatting styl@bowing for individual freedom is

similar to a system-wide optimization problem that invaenumber of subsystems. In our case, the
subsystems are individual coders and the whole system tedne as a whole. Optimizing each subsystem
separately would mean that each developer would own andacddgrict part of the overall system. While
this approach maximizes individual developer produgtjiittdoes not maximize overall productivity in

that it discourages and hinders collective code ownerstaphas been demonstrated to be highly effective
in the right settings (e.g. Extreme Programming). On thewottand, an overly ridged code formatting
standard will allow for collective code ownership but it ldlso damage the individual productivity of

Uhttp:/www.research.att.com/"bs/C++.html

12Computer mice layouts show even greater variability thaybkards and going between different types can hurt prodogti
even greater. For example, a standard mouse could not bedifferent than a trackball-type of mouse and going from adad
mouse to a trackball only occasionally can severely degpaol@uctivity if the individual is unfamiliar with the tradall.

68

every member of the team. Therefore, the “optimal” solutiothe code formatting problem is to have the
group adopt enough of a uniform style to foster collectivdecownership and speed code reviews, but not
to needlessly damage individual coder productivity. Thiamee between these conflicting goals must be
handled with care and only group communication along witheglence and experimentation will yield a
near-optimal solution to the code formatting standard$ler for a particular team of developers.

While the above varied sources have different levels ofiopson the importance on consistent code
formatting, they all agree that it is the developers theresethat should come up with the guidelines, and
not non-technical managers. They also all seem to agree ttw@ding standard that is too ridged will do
more harm than good (i.e. by damaging the productivity andaiaf individual programmers).

The majority opinion of these experts, therefore, seemetinat a team of software developers should get
together and collectively decide on a sufficient set of dinée for code formatting and each member
should try to follow the spirit of the agreed upon style as mas is reasonable while being allowed to
bend or break the guidelines when appropriate.

69

F Guidelines for reformatting of source code

When a sufficiently common coding style is not being used bglelelopers in a project and no
recommendations for a common coding style exists, then guigelines are needed for the situations
where code written by one individual is modified by anothelividual that uses a different coding style.
These guidelines address how developers should conduséhees when modifying source files written
largely by someone else.

1. First and foremost, each developer should respect tlee ddvelopers’ formatting styles when
modifying their code. If a developer has a preferred Emagds sthen that style should be listed
explicitly at the top of each source file that is modified. Thi#§ help other developers that use
Emacs to stay consistent with the file’s style.

2. When only small changes are needed, a developer should apithe formatting style already in use
in the file. This helps to respect other developers and helpsdid needless changes for the version
control system to have to track. Again, when user-defineesfilecific Emacs styles are specified,
then it is easy to maintain a file’s style when editing fileotlygh Emacs.

3. Reformatting a file written by someone else and checkiingi# only justified if significant changes
are made. However, if a developer needs to understand a imatgol piece of code in order to make
perhaps even a small change in the end, then that developealstabe justified in reformatting the
file. When a reformatting is done, the new Emacs formattige sthould be added to the top of the
source file in order to make it easier for the original ownethaf file and other developers to
maintain the new style.

4. Multiple re-formats of the same file should not be checkeaovier and over again as this will result
in massive increases the the amount of information that ¢éihg€ian control system needs to keep
track of and makes diffs more difficult to perform.

The above guidelines ensure that individuals are given mabdreedom to format code to their liking but
also helps to foster the shared ownership and developmewidef. In addition, the use of user-defined
file-specific formats makes it easy for developers to accodateformatting styles different from their
own.

70

v1.32

@ Sandia National Laboratories

	Introduction
	Alpha-numeric item designations
	Naming conventions (NC)
	Naming and organization of source files (NOSF)
	Coding guidelines
	General coding guidelines (GCG)
	Error handling
	Memory management
	Object Control
	Object Introspection
	Miscellaneous coding guidelines

	Specification of data members and passing and returning objects from functions

	Formatting of source code
	General formatting source code principles (FSCP)
	Specific guidelines for formatting source code (FSC)

	Doxygen documentation guidelines
	General principles for function and class level documentation (DOXP)
	Specific Doxygen documentation principles (DOX)

	References
	Summary of guidelines
	Summary of Teuchos memory management classes and idioms
	Summary of ``C++ Coding Standards'' (CPPCS) with amendments
	Miscellaneous amendments to ``C++ Coding Standards''
	Amendments to items related to compiler/linker incompatibilities
	Amendments for 'using' declarations and directives

	Arguments for adopting a consistent code formatting style
	Statements on coding style from varied persons and/or organizations
	Open source software (the GNU project)
	Agile Methods (Extreme Programming)
	Code Complete
	Lockheed Martin Joint Strike Fighter C++ Coding Standard

	The keyboard analogy for coding styles
	Conclusions

	Guidelines for reformatting of source code

